Analytical and Bioanalytical Chemistry

, Volume 405, Issue 17, pp 5785–5805 | Cite as

Inkjet printed (bio)chemical sensing devices

  • Nobutoshi Komuro
  • Shunsuke Takaki
  • Koji Suzuki
  • Daniel Citterio


Inkjet printing has evolved from an office printing application to become an important tool in industrial mass fabrication. In parallel, this technology is increasingly used in research laboratories around the world for the fabrication of entire (bio)chemical sensing devices or single functional elements of such devices. Regularly stated characteristics of inkjet printing making it attractive to replace an alternative material deposition method are low cost, simplicity, high resolution, speed, reproducibility, flexibility, non-contact, and low amount of waste generated. With this review, we give an overview over areas of (bio)chemical sensing device development profiting from inkjet printing applications. A variety of printable functional sensor elements are introduced by examples, and the advantages and challenges of the inkjet method are pointed out. It is demonstrated that inkjet printing is already a routine tool for the fabrication of some (bio)chemical sensing devices, but also that novel applications are being continuously developed. Finally, some inherent limitations of the method and challenges for the further exploitation of this technology are pointed out.


Inkjet printing Screen printing Electrodes Conducting polymers Microfluidic paper-based analytical devices 



Dodecylbenzenesulfonic acid




Horseradish peroxidase




Light emitting diode


Limit of detection






Poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)


Surface enhanced Raman scattering


  1. 1.
    Kimura J, Kawana Y, Kuriyama T (1988) An immobilized enzyme membrane fabrication method using an ink jet nozzle. Biosensors 4:41–52CrossRefGoogle Scholar
  2. 2.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:212–2126CrossRefGoogle Scholar
  3. 3.
    Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305CrossRefGoogle Scholar
  4. 4.
    De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: State of the art and future developments. Adv Mater 16:203–213CrossRefGoogle Scholar
  5. 5.
    Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–713CrossRefGoogle Scholar
  6. 6.
    Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing—process and its applications. Adv Mater 22:673–685CrossRefGoogle Scholar
  7. 7.
    Hwang SY, Lim G (2000) DNA chip technologies. Biotechnol Bioprocess Eng 5:159–163CrossRefGoogle Scholar
  8. 8.
    Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ (2010) Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 35:845–867CrossRefGoogle Scholar
  9. 9.
    Delaney JT, Smith PJ, Schubert US (2009) Inkjet printing of proteins. Soft Matter 5:4866–4877CrossRefGoogle Scholar
  10. 10.
    Kukkola J, Mohl M, Leino AR, Toth G, Wu MC, Shchukarev A, Popov A, Mikkola JP, Lauri J, Riihimaki M, Lappalainen J, Jantunen H, Kordas K (2012) Inkjet printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties. J Mater Chem 22:17878–17886CrossRefGoogle Scholar
  11. 11.
    Teichler A, Perelaer J, Schubert US (2013) Inkjet printing of organic electronics - comparison of deposition techniques and state-of-the-art developments. J Mater Chem C 1:1910–1925CrossRefGoogle Scholar
  12. 12.
    Barbulovic-Nad I, Lucente M, Yu S, Mingjun Z, Wheeler AR, Bussmann M (2006) Bio-microarray fabrication techniques - A review. Crit Rev Biotechnol 26:237–259CrossRefGoogle Scholar
  13. 13.
    Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136:1067–1076CrossRefGoogle Scholar
  14. 14.
    De Gans BJ, Hoeppener S, Schubert US (2006) Polymer-relief microstructures by inkjet etching. Adv Mater 18:910–914CrossRefGoogle Scholar
  15. 15.
    Abe K, Suzuki K, Citterio D (2008) Inkjet printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934CrossRefGoogle Scholar
  16. 16.
    Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nat Mater 7:277–290CrossRefGoogle Scholar
  17. 17.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem, Int Ed 37:550–575CrossRefGoogle Scholar
  18. 18.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) "Dip-pen" nanolithography. Science 283:661–663CrossRefGoogle Scholar
  19. 19.
    Derby B (2008) Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem 18:5717–5721CrossRefGoogle Scholar
  20. 20.
    Setti L, Fraleoni-Morgera A, Ballarin B, Filippini A, Frascaro D, Piana C (2005) An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens Bioelectron 20:2019–2026CrossRefGoogle Scholar
  21. 21.
    Setti L, Fraleoni-Morgera A, Mencarelli I, Filippini A, Ballarin B, Di Biase M (2007) An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sens Actuators, B 126:252–257CrossRefGoogle Scholar
  22. 22.
    Di Risio S, Yan N (2010) Bioactive paper through inkjet printing. J Adhes Sci Technol 24:661–684CrossRefGoogle Scholar
  23. 23.
    Khan MS, Fon D, Li X, Tian J, Forsythe J, Garnier G, Shen W (2010) Biosurface engineering through ink jet printing. Colloids Surf B 75:441–447CrossRefGoogle Scholar
  24. 24.
    Nishioka GM, Markey AA, Holloway CK (2004) Protein damage in drop-on-demand printers. J Am Chem Soc 126:16320–16321CrossRefGoogle Scholar
  25. 25.
    Di Risio SD, Yan N (2007) Piezoelectric ink-jet printing of horseradish peroxidase: Effect of Ink viscosity modifiers on activity. Macromol Rapid Commun 28:1934–1940CrossRefGoogle Scholar
  26. 26.
    Loffredo F, Mauro ADGD, Burrasca G, La Ferrara V, Quercia L, Massera E, Di Francia G, Sala DD (2009) Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens Actuators, B 143:421–429CrossRefGoogle Scholar
  27. 27.
    Ihalainen P, Majumdar H, Määttänen A, Wang S, Österbacka R, Peltonen J (2012) Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications. Biochim Biophys Acta - Gen Subjects. doi:10.1016/j.bbagen.2012.09.007 Google Scholar
  28. 28.
    Jalkanen T, Mäkilä E, Määttänen A, Tuura J, Kaasalainen M, Lehto V-P, Ihalainen P, Peltonen J, Salonen J (2012) Porous silicon micro- and nanoparticles for printed humidity sensors. Appl Phys Lett 101:263110–263114CrossRefGoogle Scholar
  29. 29.
    Andersson H, Manuilskiy A, Unander T, Lidenmark C, Forsberg S, Nilsson HE (2012) Inkjet printed silver nanoparticle humidity sensor with memory effect on paper. IEEE Sens J 12:1901–1905CrossRefGoogle Scholar
  30. 30.
    Sarfraz J, Tobjörk D, Österbacka R, Lindén M (2012) Low-cost hydrogen sulfide gas sensor on paper substrates: Fabrication and demonstration. IEEE Sens J 12:1973–1978CrossRefGoogle Scholar
  31. 31.
    Määttänen A, Vanamo U, Ihalainen P, Pulkkinen P, Tenhu H, Bobacka J, Peltonen J (2013) A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sens Actuators, B 177:153–162CrossRefGoogle Scholar
  32. 32.
    Altenberend U, Molina-Lopez F, Oprea A, Briand D, Bârsan N, De Rooij NF, Weimar U (2012) Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability. Sens Actuators, B. doi:10.1016/j.snb.2012.11.025 Google Scholar
  33. 33.
    Claramunt S, Monereo O, Boix M, Leghrib R, Prades JD, Cornet A, Merino P, Merino C, Cirera A (2013) Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres. Sens Actuators, B. doi:10.1016/j.snb.2012.12.093 Google Scholar
  34. 34.
    Bidoki SM, Lewis DM, Clark M, Vakorov A, Millner PA, McGorman D (2007) Ink-jet fabrication of electronic components. J Micromech Microeng 17:967CrossRefGoogle Scholar
  35. 35.
    Magdassi S, Grouchko M, Berezin O, Kamyshny A (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4:1943–1948CrossRefGoogle Scholar
  36. 36.
    Perelaer J, Abbel R, Wünscher S, Jani R, van Lammeren T, Schubert US (2012) Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv Mater 24:2620–2625CrossRefGoogle Scholar
  37. 37.
    Tobjörk D, Aarnio H, Pulkkinen P, Bollström R, Määttänen A, Ihalainen P, Mäkelä T, Peltonen J, Toivakka M, Tenhu H, Österbacka R (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520:2949–2955CrossRefGoogle Scholar
  38. 38.
    Määttänen A, Ihalainen P, Pulkkinen P, Wang S, Tenhu HJ, Peltonen J (2012) Inkjet-printed gold electrodes on paper - characterisation and functionalisation. ACS Appl Mater Interfaces 4:955–964CrossRefGoogle Scholar
  39. 39.
    Nie X, Wang H, Zou J (2012) Inkjet printing of silver citrate conductive ink on PET substrate. Appl Surf Sci 261:554–560CrossRefGoogle Scholar
  40. 40.
    Ihalainen P, Majumdar H, Viitala T, Törngren B, Närjeoja T, Määttänen A, Sarfraz J, Härmä H, Yliperttula M, Österbacka R, Peltonen J (2012) Application of paper-supported printed gold electrodes for impedimetric immunosensor development. Biosensors 3:1–17CrossRefGoogle Scholar
  41. 41.
    Jensen GC, Krause CE, Sotzing GA, Rusling JF (2011) Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys Chem Chem Phys 13:4888–4894CrossRefGoogle Scholar
  42. 42.
    Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84:3745–3750CrossRefGoogle Scholar
  43. 43.
    Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505CrossRefGoogle Scholar
  44. 44.
    Kordás K, Mustonen T, Tóth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM (2006) Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2:1021–1025CrossRefGoogle Scholar
  45. 45.
    Small WR, in het Panhuis M (2007) Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 3:1500–1503CrossRefGoogle Scholar
  46. 46.
    Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem, Int Ed 49:2154–2157CrossRefGoogle Scholar
  47. 47.
    Weng B, Shepherd RL, Crowley K, Killard AJ, Wallace GG (2010) Printing conducting polymers. Analyst 135:2779–2789CrossRefGoogle Scholar
  48. 48.
    Su S-J, Kuramoto N (2000) Synthesis of processable polyaniline complexed with anionic surfactant and its conducting blends in aqueous and organic system. Synth Met 108:121–126CrossRefGoogle Scholar
  49. 49.
    Crowley K, Morrin A, Hernandez A, O'Malley E, Whitten PG, Wallace GG, Smyth MR, Killard AJ (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77:710–717CrossRefGoogle Scholar
  50. 50.
    Crowley K, O'Malley E, Morrin A, Smyth MR, Killard AJ (2008) An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Analyst 133:391–399CrossRefGoogle Scholar
  51. 51.
    Morrin A, Ngamna O, O'Malley E, Kent N, Moulton SE, Wallace GG, Smyth MR, Killard AJ (2008) The fabrication and characterization of inkjet-printed polyaniline nanoparticle films. Electrochim Acta 53:5092–5099CrossRefGoogle Scholar
  52. 52.
    Oh W-K, Kim S, Shin K-H, Jang Y, Choi M, Jang J (2013) Inkjet-printed polyaniline patterns for exocytosed molecule detection from live cells. Talanta 105:333–339CrossRefGoogle Scholar
  53. 53.
    Phongphut A, Sriprachuabwong C, Wisitsoraat A, Tuantranont A, Prichanont S, Sritongkham P (2013) A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination. Sens Actuators, B 178:501–507CrossRefGoogle Scholar
  54. 54.
    Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22:5478–5485CrossRefGoogle Scholar
  55. 55.
    Karuwan C, Sriprachuabwong C, Wisitsoraat A, Phokharatkul D, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol. Sens Actuators, B 161:549–555CrossRefGoogle Scholar
  56. 56.
    Tseng CC, Chou YH, Hsieh TW, Wang MW, Shu YY, Ger MD (2012) Interdigitated electrode fabricated by integration of ink-jet printing with electroless plating and its application in gas sensor. Colloid Surface A 402:45–52CrossRefGoogle Scholar
  57. 57.
    Mabrook MF, Pearson C, Petty MC (2006) Inkjet-printed polymer films for the detection of organic vapors. IEEE Sens J 6:1435–1444CrossRefGoogle Scholar
  58. 58.
    Yang M, Li LH, Zhang SQ, Li GY, Zhao HJ (2010) Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode. Sens Actuators, B 147:622–628CrossRefGoogle Scholar
  59. 59.
    O'Toole M, Shepherd R, Wallace GG, Diamond D (2009) Inkjet printed LED based pH chemical sensor for gas sensing. Anal Chim Acta 652:308–314CrossRefGoogle Scholar
  60. 60.
    Courbat J, Briand D, Wollenstein J, de Rooij NF (2011) Polymeric foil optical waveguide with inkjet printed gas sensitive film for colorimetric sensing. Sens Actuators, B 160:910–915CrossRefGoogle Scholar
  61. 61.
    Courbat J, Briand D, Damon-Lacoste J, Wöllenstein J, de Rooij NF (2009) Evaluation of pH indicator-based colorimetric films for ammonia detection using optical waveguides. Sens Actuators, B 143:62–70CrossRefGoogle Scholar
  62. 62.
    Yoon B, Ham DY, Yarimaga O, An H, Lee CW, Kim JM (2011) Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv Mater 23:5492–5497CrossRefGoogle Scholar
  63. 63.
    Yoon B, Shin H, Yarimaga O, Ham DY, Kim J, Park IS, Kim JM (2012) An inkjet-printable microemulsion system for colorimetric polydiacetylene supramolecules on paper substrates. J Mater Chem 22:8680–8686CrossRefGoogle Scholar
  64. 64.
    Alkasir RSJ, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84:9729–9737CrossRefGoogle Scholar
  65. 65.
    Hossain SMZ, Luckham RE, Smith AM, Lebert JM, Davies LM, Pelton RH, Filipe CDM, Brennan JD (2009) Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Anal Chem 81:5474–5483CrossRefGoogle Scholar
  66. 66.
    Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064CrossRefGoogle Scholar
  67. 67.
    Hossain S, Ozimok C, Sicard C, Aguirre S, Ali M, Li Y, Brennan J (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem 403:1567–1576CrossRefGoogle Scholar
  68. 68.
    Kwon H, Samain F, Kool ET (2012) Fluorescent DNAs printed on paper: Sensing food spoilage and ripening in the vapor phase. Chem Sci 3:2542–2549CrossRefGoogle Scholar
  69. 69.
    Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28:11265–11273CrossRefGoogle Scholar
  70. 70.
    Carter JC, Alvis RM, Brown SB, Langry KC, Wilson TS, McBride MT, Myrick ML, Cox WR, Grove ME, Colston BW (2006) Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept. Biosens Bioelectron 21:1359–1364CrossRefGoogle Scholar
  71. 71.
    Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337CrossRefGoogle Scholar
  72. 72.
    Kirk JT, Fridley GE, Chamberlain JW, Christensen ED, Hochberg M, Ratner DM (2011) Multiplexed inkjet functionalization of silicon photonic biosensors. Lab Chip 11:1372–1377CrossRefGoogle Scholar
  73. 73.
    Yu WW, White IM (2010) Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630CrossRefGoogle Scholar
  74. 74.
    Yu WW, White IM (2013) Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138:1020–1025CrossRefGoogle Scholar
  75. 75.
    Bietsch A, Zhang JY, Hegner M, Lang HP, Gerber C (2004) Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15:873–880CrossRefGoogle Scholar
  76. 76.
    Ness SJ, Kim S, Woolley AT, Nordin GP (2012) Single-sided inkjet functionalization of silicon photonic microcantilevers. Sens Actuators, B 161:80–87CrossRefGoogle Scholar
  77. 77.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem, Int Ed 46:1318–1320CrossRefGoogle Scholar
  78. 78.
    Ballerini D, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluidics 13:769–787CrossRefGoogle Scholar
  79. 79.
    Parolo C, Merkoci A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457CrossRefGoogle Scholar
  80. 80.
    Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 6:011301–011313CrossRefGoogle Scholar
  81. 81.
    Martinez AW (2011) Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA. Bioanalysis 3:2589–2592CrossRefGoogle Scholar
  82. 82.
    Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TrAC, Trends Anal Chem 28:925–942CrossRefGoogle Scholar
  83. 83.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal Chem 82:3–10CrossRefGoogle Scholar
  84. 84.
    Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398:885–893CrossRefGoogle Scholar
  85. 85.
    Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B 76:564–570CrossRefGoogle Scholar
  86. 86.
    Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17:649–659CrossRefGoogle Scholar
  87. 87.
    Citterio D, Maejima K, Suzuki K (2011) VOC-free inkjet patterning method for the fabrication of "paperfluidic" sensing devices. Paper presented at the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Seattle, Washington, USAGoogle Scholar
  88. 88.
    Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: An integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv. doi:10.1039/C3RA40828K Google Scholar
  89. 89.
    Jayawardane BM, McKelvie ID, Kolev SD (2012) A paper-based device for measurement of reactive phosphate in water. Talanta 100:454–460CrossRefGoogle Scholar
  90. 90.
    Delaney JL, Hogan CF, Tian JF, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306CrossRefGoogle Scholar
  91. 91.
    Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J (2011) Paper-based planar reaction arrays for printed diagnostics. Sens Actuators, B 160:1404–1412CrossRefGoogle Scholar
  92. 92.
    Hossain SMZ, Brennan JD (2011) β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal Chem 83:8772–8778CrossRefGoogle Scholar
  93. 93.
    Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579CrossRefGoogle Scholar
  94. 94.
    Calvert P (2007) Printing cells. Science 318:208–209CrossRefGoogle Scholar
  95. 95.
    Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99CrossRefGoogle Scholar
  96. 96.
    Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666CrossRefGoogle Scholar
  97. 97.
    Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926CrossRefGoogle Scholar
  98. 98.
    Feng X, JinHui W, ShuQi W, Naside Gozde D, Umut Atakan G, Utkan D (2011) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3:034101CrossRefGoogle Scholar
  99. 99.
    Ellis SR, Ferris CJ, Gilmore KJ, Mitchell TW, Blanksby SJ, in het Panhuis M (2012) Direct lipid profiling of single cells from inkjet printed microarrays. Anal Chem 84:9679–9683CrossRefGoogle Scholar
  100. 100.
    Liberski AR, Delaney JT, Schubert US (2010) “One cell−one well”: a new approach to inkjet printing single cell microarrays. ACS Comb Sci 13:190–195CrossRefGoogle Scholar
  101. 101.
    Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, in het Panhuis M (2013) Bio-ink for on-demand printing of living cells. Biomater Sci 1:224–230CrossRefGoogle Scholar
  102. 102.
    Shabnam P, Madhuja G, Frédéric L, Karen CC (2010) Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication 2:025003CrossRefGoogle Scholar
  103. 103.
    Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203CrossRefGoogle Scholar
  104. 104.
    Kit-Anan W, Olarnwanich A, Sriprachuabwong C, Kuruwan C, Tuantranont A, Wisitsoraat A, Srituravanich W, Pimpin A (2012) Disposable paper-based electrochemical sensor utilizing inkjet-printed polyaniline modified screen-printed carbon electrode for ascorbic acid detection. J Electroanal Chem 685:72–78CrossRefGoogle Scholar
  105. 105.
    Su SX, Ali M, Filipe CDM, Li YF, Pelton R (2008) Microgel-based inks for paper-supported biosensing applications. Biomacromolecules 9:935–941CrossRefGoogle Scholar
  106. 106.
    Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500CrossRefGoogle Scholar
  107. 107.
    Jung W, Sahner K, Leung A, Tuller HL (2009) Acoustic wave-based NO2 sensor: Ink-jet printed active layer. Sens Actuators, B 141:485–490CrossRefGoogle Scholar
  108. 108.
    Shen W, Li M, Ye C, Jiang L, Song Y (2012) Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. Lab Chip 12:3089–3095CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nobutoshi Komuro
    • 1
  • Shunsuke Takaki
    • 1
  • Koji Suzuki
    • 1
  • Daniel Citterio
    • 1
  1. 1.Department of Applied ChemistryKeio UniversityYokohamaJapan

Personalised recommendations