Skip to main content
Log in

Bioaerosol analysis based on a label-free microarray readout method using surface-enhanced Raman scattering

  • Rapid Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacterial contamination of indoor air is a serious threat to human health. Pathogenic germs can be transferred from the liquid to the aerosol phase, for instance, when water is sprayed in the air, such as in shower rooms, air conditioners, or fountains. Existing analytical methods for biological indoor air-quality assessment and contamination monitoring are mostly time consuming as they generally require a cultivation step. The need for a rapid, sensitive, and selective detection method for bioaerosols is evident. Our approach is based on the combination of a commercial wet particle sampler (Coriolis μ, Bertin Technologies, France) and a label-free microarray readout based on surface-enhanced Raman scattering (SERS) for detection, which was established in our laboratories. Heat-inactivated Escherichia coli bacteria were used as test microorganisms. An E. coli suspension was sprayed into the chamber by a jet air nebulizer. The resulting bioaerosol was dried, neutralized, and then collected by a Coriolis μ sampler. The bacteria collected were detected by a recently developed microarray readout system, based on label-free SERS detection. A special data evaluation procedure was applied in order to fully exploit the selectivity of the detection scheme, resulting in a detection limit of 144 particles per cubic centimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15(3):506–526. doi:10.1128/Cmr.15.3.506-526.2002

    Article  Google Scholar 

  2. Nygard K, Werner-Johansen O, Ronsen S, Caugant DA, Simonsen O, Kanestrom A, Ask E, Ringstad J, Odegard R, Jensen T, Krogh T, Hoiby EA, Ragnhildstveit E, Aarberge IS, Aavitsland P (2008) An outbreak of legionnaires disease caused by long-distance spread from an industrial air scrubber in Sarpsborg, Norway. Clin Infect Dis 46(1):61–69. doi:10.1086/524016

    Article  Google Scholar 

  3. Wadowsky RM, Yee RB, Mezmar L, Wing EJ, Dowling JN (1982) Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures. Appl Environ Microbiol 43(5):1104–1110

    CAS  Google Scholar 

  4. Blatny JM, Reif BAP, Skogan G, Andreassen O, Hoiby EA, Ask E, Waagen V, Aanonsen D, Aaberge IS, Caugant DA (2008) Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant. Environ Sci Technol 42(19):7360–7367. doi:10.1021/Es800306m

    Article  CAS  Google Scholar 

  5. Alvarez AJ, Buttner MP, Stetzenbach LD (1995) PCR for bioaerosol monitoring - sensitivity and environmental interference. Appl Environ Microbiol 61(10):3639–3644

    CAS  Google Scholar 

  6. Jackson SN, Mishra S, Murray KK (2003) Aerosol MALDI for real-time detection of bioaerosols. Abstr Pap Am Chem Soc 225:U826–U826

    Google Scholar 

  7. Chang CW, Chou FC, Hung PY (2010) Evaluation of bioaerosol sampling techniques for Legionella pneumophila coupled with culture assay and quantitative PCR. J Aerosol Sci 41(12):1055–1065. doi:10.1016/j.jaerosci.2010.09.002

    Article  CAS  Google Scholar 

  8. Langer V, Hartmann G, Niessner R, Seidel M (2012) Rapid quantification of bioaerosols containing L. pneumophila by Coriolis® μ air sampler and chemiluminescence antibody microarrays. J Aerosol Sci 48:46–55. doi:10.1016/j.jaerosci.2012.02.001

    Article  CAS  Google Scholar 

  9. Sengupta A, Brar N, Davis EJ (2007) Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy. J Colloid Interface Sci 309(1):36–43. doi:10.1016/j.jcis.2007.02.015

    Article  CAS  Google Scholar 

  10. Sengupta A, Laucks ML, Dildine N, Drapala E, Davis EJ (2005) Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS). J Aerosol Sci 36(5–6):651–664. doi:10.1016/j.jaerosci.2004.11.001

    Article  CAS  Google Scholar 

  11. Knauer M, Ivleva NP, Liu X, Niessner R, Haisch C (2010) Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Anal Chem 82(7):2766–2772. doi:10.1021/ac902696y

    Article  CAS  Google Scholar 

  12. Wolter A, Niessner R, Seidel M (2007) Preparation and characterization of functional poly(ethylene glycol) surfaces for the use of antibody microarrays. Anal Chem 79:4529–4537

    Article  CAS  Google Scholar 

  13. Knauer M, Ivleva NP, Niessner R, Haisch C (2012) A flow-through microarray cell for the online SERS detection of antibody-captured E. coli bacteria. Anal Bioanal Chem 402(8):2663–2667. doi:10.1007/s00216-011-5398-0

    Article  CAS  Google Scholar 

  14. Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727. doi:10.1021/Jp027460u

    Article  CAS  Google Scholar 

  15. Knauer M, Ivleva NP, Niessner R, Haisch C (2010) Optimized surface-enhanced Raman scattering (SERS) colloids for the characterization of microorganisms. Anal Sci 26(7):761–766

    Article  CAS  Google Scholar 

  16. Johnson DL, Pearce TA, Esmen NA (1999) The effect of phosphate buffer on aerosol size distribution of nebulized Bacillus subtilis and Pseudomonas fluorescens bacteria. Aerosol Sci Technol 30(2):202–210

    Article  CAS  Google Scholar 

  17. Rebuffo-Scheer CA, Kirschner C, Staemmler M, Naumann D (2007) Rapid species and strain differentiation of non-tubercoulous mycobacteria by Fourier-transform infrared microspectroscopy. J Microbiol Methods 68(2):282–290. doi:10.1016/j.mimet.2006.08.011

    Article  CAS  Google Scholar 

  18. Lasch P, Diem M, Hansch W, Naumann D (2006) Artificial neural networks as supervised techniques for FT-IR microspectroscopic imaging. J Chemom 20(5):209–220. doi:10.1002/Cem.993

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Haisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarzmeier, K., Knauer, M., Ivleva, N.P. et al. Bioaerosol analysis based on a label-free microarray readout method using surface-enhanced Raman scattering. Anal Bioanal Chem 405, 5387–5392 (2013). https://doi.org/10.1007/s00216-013-6984-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6984-0

Keywords

Navigation