Analytical and Bioanalytical Chemistry

, Volume 405, Issue 19, pp 6145–6154 | Cite as

Evaluation of diverse peptidyl motifs for cellular delivery of semiconductor quantum dots

  • Kelly Boeneman Gemmill
  • Markus Muttenthaler
  • James B. Delehanty
  • Michael H. Stewart
  • Kimihiro Susumu
  • Philip E. Dawson
  • Igor L. MedintzEmail author
Paper in Forefront
Part of the following topical collections:
  1. Optical Nanosensing in Cells


Cell-penetrating peptides (CPPs) have rapidly become a mainstay technology for facilitating the delivery of a wide variety of nanomaterials to cells and tissues. Currently, the library of CPPs to choose from is still limited, with the HIV TAT-derived motif still being the most used. Among the many materials routinely delivered by CPPs, nanoparticles are of particular interest for a plethora of labeling, imaging, sensing, diagnostic, and therapeutic applications. The development of nanoparticle-based technologies for many of these uses will require access to a much larger number of functional peptide motifs that can both facilitate cellular delivery of different types of nanoparticles to cells and be used interchangeably in the presence of other peptides and proteins on the same surface. Here, we evaluate the utility of four peptidyl motifs for their ability to facilitate delivery of luminescent semiconductor quantum dots (QDs) in a model cell culture system. We find that an LAH4 motif, derived from a membrane-inserting antimicrobial peptide, and a chimeric sequence that combines a sweet arrow peptide with a portion originating from the superoxide dismutase enzyme provide effective cellular delivery of QDs. Interestingly, a derivative of the latter sequence lacking just a methyl group was found to be quite inefficient, suggesting that even small changes can have significant functional outcomes. Delivery was effected using 1 h incubation with cells, and fluorescent counterstaining strongly suggests an endosomal uptake process that requires a critical minimum number or ratio of peptides to be displayed on the QD surface. Concomitant cytoviability testing showed that the QD–peptide conjugates are minimally cytotoxic in the model COS-1 cell line tested. Potential applications of these peptides in the context of cellular delivery of nanoparticles and a variety of other (bio)molecules are discussed.


Cell-penetrating peptide Quantum dot Nanoparticle Cell Delivery Endocytosis Labeling Nanotechnology Sweet arrow peptide Quantum dot Metal affinity 



The authors acknowledge NRL NSI and DTRA JSTO MIPR # B112582M for financial support. M.M. acknowledges funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 254897.


  1. 1.
    Ho YP, Leong KW (2010) Nanoscale 2:60–68CrossRefGoogle Scholar
  2. 2.
    Janib SM, Moses AS, MacKay JA (2010) Adv Drug Deliv Rev 62:1052–1063CrossRefGoogle Scholar
  3. 3.
    Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Medintz IL (2009) Expert Opin Drug Deliv 6:1091–1112CrossRefGoogle Scholar
  4. 4.
    Delehanty JB, Mattoussi H, Medintz IL (2009) Anal Bioanal Chem 393:1091–1105CrossRefGoogle Scholar
  5. 5.
    Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2009) Bioconjugate Chem 22:825–858CrossRefGoogle Scholar
  6. 6.
    Sapsford KE, Algar WR, Berti L, Boeneman Gemmill K, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Chem Rev 113:1904–2074CrossRefGoogle Scholar
  7. 7.
    Duncan R, Richardson SC (2012) Mol Pharm 9:2380–2042CrossRefGoogle Scholar
  8. 8.
    Licht SS, Sonnleitner A, Weiss S, Schultz PG (2003) Biochemistry 42:2916–2925CrossRefGoogle Scholar
  9. 9.
    Delehanty JB, Bradburne CE, Boeneman K, Susumu K, Farrell D, Mei BC, Blanco-Canosa JB, Dawson G, Dawson PE, Mattoussi Medintz IL (2010) Integr Biol 2:265–277CrossRefGoogle Scholar
  10. 10.
    Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Anal Chem 83:8826–8837CrossRefGoogle Scholar
  11. 11.
    Walters R, Kraig RP, Medintz I, Delehanty JB, Stewart MH, Susumu K, Huston AL, Dawson PE, Dawson G (2012) ASN Neuro 4:e00099CrossRefGoogle Scholar
  12. 12.
    Boeneman Gemmill K, Delehanty JB, Blanco-Canosa JB, Susumu K, Stewart MH, Oh E, Huston AL, Dawson G, Ingale S, Walters R, Domowicz M, Deschamps JR, Algar WR, DiMaggio SC, Manono J, Spillmann CM, Thompson DA, Jennings TL, Dawson PE, Medintz IL (2013) ACS Nano (in press)Google Scholar
  13. 13.
    Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, Mattoussi H (2006) Bioconjugate Chem 17:920–927CrossRefGoogle Scholar
  14. 14.
    Blanco-Canosa JB, Medintz IL, Farrell D, Mattoussi H, Dawson PE (2010) J Am Chem Soc 132:10027–10033CrossRefGoogle Scholar
  15. 15.
    Sapsford KE, Farrell D, Sun S, Rasooly A, Mattoussi H, Medintz IL (2009) Sens Actuators B Chem 139:13–21CrossRefGoogle Scholar
  16. 16.
    Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H (2008) J Mater Chem 18:4949–4958CrossRefGoogle Scholar
  17. 17.
    Mei BC, Susumu K, Medintz IL, Mattoussi H (2009) Nat Protoc 4:412–423CrossRefGoogle Scholar
  18. 18.
    Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Blanco-Canosa JB, Dawson PE, Granek J, Shoff M, Zhang Q, Goering PL, Huston A, Medintz IL (2011) ACS Nano 5:6434–6448CrossRefGoogle Scholar
  19. 19.
    Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H (2007) J Phys Chem C 111:11528–11538CrossRefGoogle Scholar
  20. 20.
    Dennis AM, Sotto D, Mei BC, Medintz IL, Mattoussi H, Bao G (2010) Bioconjugate Chem 21:1160–1170CrossRefGoogle Scholar
  21. 21.
    Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) J Am Chem Soc 130:1274–1284CrossRefGoogle Scholar
  22. 22.
    Boeneman K, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Melinger JS, Ancona M, Stewart MH, Susumu K, Huston A, Medintz IL (2010) J Am Chem Soc 132:18177–18190CrossRefGoogle Scholar
  23. 23.
    Susumu K, Oh E, Delehanty JB, Blanco-Canosa JB, Johnson BJ, Jain V, Hervey WJ, Algar WR, Boeneman K, Dawson PE, Medintz IL (2011) J Am Chem Soc 133:9480–9496CrossRefGoogle Scholar
  24. 24.
    Boeneman Gemmill K, Deschamps JR, Delehanty JB, Susumu K, Stewart MH, Glaven RH, Anderson GP, Goldman ER, Huston AL, Medintz IL (2013) Bioconjugate Chem 24:269–281CrossRefGoogle Scholar
  25. 25.
    Boeneman K, Deschamps JR, Buckhout-White S, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Stewart MH, Susumu K, Goldman ER, Ancona M, Medintz IL (2010) ACS Nano 4:7253–7266CrossRefGoogle Scholar
  26. 26.
    Sapsford KE, Granek J, Deschamps JR, Boeneman K, Blanco-Canosa JB, Dawson PE, Susumu K, Stewart MH, Medintz IL (2011) ACS Nano 5:2687–2699CrossRefGoogle Scholar
  27. 27.
    Lo SL, Wang S (2008) Biomaterials 29:2408e14CrossRefGoogle Scholar
  28. 28.
    Midoux P, Monsigny M (1999) Bioconjugate Chem 10:406–411CrossRefGoogle Scholar
  29. 29.
    Midoux P, Pichon C, Yaounac JJ, Jaffrès (2009) Br J Pharmacol 157:166-178Google Scholar
  30. 30.
    Leng Q, Scaria P, Zhu J, Ambulos N, Campbell P, Mixson AJ (2005) J Gene Med 7:977–986CrossRefGoogle Scholar
  31. 31.
    Vogt TC, Bechinger B (1999) J Biol Chem 274:29115–29121CrossRefGoogle Scholar
  32. 32.
    Mason AJ, Gasnier C, Bechinger B (2006) Antimicrob. Agents Chemother 50:3305–3311Google Scholar
  33. 33.
    Bechinger B (1996) J Mol Biol 263:768–775CrossRefGoogle Scholar
  34. 34.
    De Coupade C, Fittipaldi A, Chagnas V, Michel M, Carlier S, Tasciotti E, Darmon A, Ravel D, Kearsey J, Giacca M, Cailler F (2005) Biochem J 390:407–418CrossRefGoogle Scholar
  35. 35.
    Crespo L, Sanclimens G, Montaner B, Perez-Tomas R, Royo M, Pons M, Albericio F, Giralt E (2002) J Am Chem Soc 124:8876–8883CrossRefGoogle Scholar
  36. 36.
    Fernandez-Carneado J, Kogan MJ, Castel S, Giralt E (2004) Angew Chem Int Ed 43:1811–1814CrossRefGoogle Scholar
  37. 37.
    Fernandez-Carneado J, Kogan MJ, Pujals S, Giralt E (2004) Biopolymers 76:196–203CrossRefGoogle Scholar
  38. 38.
    Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Bongard JE, Medintz IL (2010) Ther Deliv 1:411–433CrossRefGoogle Scholar
  39. 39.
    Prasuhn DE, Deschamps JR, Susumu K, Stewart MH, Boeneman K, Blanco-Canosa JB, Dawson PE, Medintz IL (2010) Small 6:555–564CrossRefGoogle Scholar
  40. 40.
    Medintz IL, Pons T, Delehanty JB, Susumu K, Brunel FM, Dawson PE, Mattoussi H (2008) Bioconjugate Chem 19:1785–1795CrossRefGoogle Scholar
  41. 41.
    Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Cell 116:565-576Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  • Kelly Boeneman Gemmill
    • 1
  • Markus Muttenthaler
    • 3
  • James B. Delehanty
    • 1
  • Michael H. Stewart
    • 2
  • Kimihiro Susumu
    • 2
    • 4
  • Philip E. Dawson
    • 3
  • Igor L. Medintz
    • 1
    Email author
  1. 1.Center for Bio/Molecular Science and Engineering Code 6900U.S. Naval Research LaboratoryWashingtonUSA
  2. 2.Division of Optical Sciences Code 5600U.S. Naval Research LaboratoryWashingtonUSA
  3. 3.Departments of Chemistry and Cell BiologyThe Scripps Research InstituteLa JollaUSA
  4. 4.Sotera Defense SolutionsAnnapolis JunctionUSA

Personalised recommendations