Analytical and Bioanalytical Chemistry

, Volume 405, Issue 16, pp 5539–5547 | Cite as

Differential linear scan voltammetry: analytical performance in comparison with pulsed voltammetry techniques

Research Paper

Abstract

We report here on differential linear scan voltammetry, DLSV, that combines the working principles of linear scan voltammetry, LSV, and the numerous existing pulsed voltammetry techniques. DLSV preserves the information from continuous interrogation in voltage and high accuracy that LSV provides about electrochemical processes, and the much better sensitivity of differential pulsed techniques. DLSV also minimizes the background current compared to both LSV and pulsed voltammetry. An early version of DLSV, derivative stationary electrode polarography, DSEP, had been proposed in the 1960s but soon abandoned in favor of the emerging differential pulsed techniques. Relative to DSEP, DLSV takes advantage of the flexibility of discrete smoothing differentiation that was not available to early investigators. Also, DSEP had been explored in pure solutions and with reversible electrochemical reactions. DLSV is tested in this work in more challenging experimental contexts: the measurement of oxygen with a carbon fiber microelectrode in buffer, and with a gold microdisc electrode exposed to a live biological preparation. This work compares the analytical performance of DLSV and square wave voltammetry, the most popular pulsed voltammetry technique.

Figure

Square wave voltammetry and differential linear scan voltammetry, DLSV. Measurement protocols and analytical results on dissolved oxygen levels obtained with a gold microdisc electrode at a live biological preparation

Keywords

Differential linear scan voltammetry Square wave voltammetry Oxygen measurement in biological environment 

Supplementary material

216_2013_6979_MOESM1_ESM.pdf (48 kb)
ESM Fig. S1(PDF 47.7 kb)

References

  1. 1.
    Barker GC (1958) Square wave polarography and some related techniques. Anal Chim Acta 18:118–131. doi:10.1016/s0003-2670(00)87111-1 CrossRefGoogle Scholar
  2. 2.
    Christie JH, Turner JA, Osteryoung RA (1977) Square wave voltammetry at the dropping mercury electrode: theory. Anal Chem 49(13):1899–1903. doi:10.1021/ac50021a008 CrossRefGoogle Scholar
  3. 3.
    Osteryoung J (1983) Pulse voltammetry. J Chem Educ 60(4):296–298. doi:10.1021/ed060p296 CrossRefGoogle Scholar
  4. 4.
    Barker GC, Gardner AW (1960) Pulse polarography. Fresenius' Zeitschrift für Analytische Chemie 173(1):79–83. doi:10.1007/bf00448718 CrossRefGoogle Scholar
  5. 5.
    Saito S, Osteryoung J (1992) Determination of sodium and other impurities in alkoxysilanes by square-wave voltammetry. Anal Chim Acta 258(2):289–297. doi:10.1016/0003-2670(92)85104-e CrossRefGoogle Scholar
  6. 6.
    Osteryoung RA, Osteryoung J, Albery WJ, Rogers GT (1981) Pulse voltammetric methods of analysis [and discussion]. Philos T Roy Soc A 302(1468):315–326CrossRefGoogle Scholar
  7. 7.
    Lu H, Gratzl M (1999) Monitoring drug efflux from sensitive and multidrug-resistant single cancer cells with microvoltammetry. Anal Chem 71(14):2821–2830. doi:10.1021/ac9811773 CrossRefGoogle Scholar
  8. 8.
    Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications. Wiley.Google Scholar
  9. 9.
    Perone SP, Mueller TR (1965) Application of derivative techniques to stationary electrode polarography. Anal Chem 37(1):2–9. doi:10.1021/ac60220a002 CrossRefGoogle Scholar
  10. 10.
    Zhou L, Rusling JF (2001) Detection of chemically induced DNA damage in layered films by catalytic square wave voltammetry using Ru(Bpy)32+. Anal Chem 73(20):4780–4786. doi:10.1021/ac0105639 CrossRefGoogle Scholar
  11. 11.
    Masarik M, Kizek R, Kramer KJ, Billova S, Brazdova M, Vacek J, Bailey M, Jelen F, Howard JA (2003) Application of avidin–biotin technology and adsorptive transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal Chem 75(11):2663–2669. doi:10.1021/ac020788z CrossRefGoogle Scholar
  12. 12.
    Jadreško D, Lovrić M (2008) A theory of square-wave voltammetry of surface-active, electroinactive compounds. Electrochim Acta 53(27):8045–8050. doi:10.1016/j.electacta.2008.06.010 CrossRefGoogle Scholar
  13. 13.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892. doi:10.1021/jp047349j CrossRefGoogle Scholar
  14. 14.
    Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45. doi:10.1111/j.1749-6632.1962.tb13623.x CrossRefGoogle Scholar
  15. 15.
    Sheth DB, Suresh G, Yang J, Ladas T, Zorman CA, Gratzl M (2008) MEMS device to monitor biological oxygen uptake at arrays of single cells and small cell clusters. Electroanalysis 20(6):627–634. doi:10.1002/elan.200704122 CrossRefGoogle Scholar
  16. 16.
    Linsenmeier RA, Yancey CM (1987) Improved fabrication of double-barreled recessed cathode O2 microelectrodes. J Appl Physiol 63(6):2554–2557Google Scholar
  17. 17.
    Kennedy RT, Jones SR, Wightman RM (1992) Simultaneous measurement of oxygen and dopamine: coupling of oxygen consumption and neurotransmission. Neuroscience 47(3):603–612. doi:10.1016/0306-4522(92)90169-3 CrossRefGoogle Scholar
  18. 18.
    Zimmerman JB, Wightman RM (1991) Simultaneous electrochemical measurements of oxygen and dopamine in vivo. Anal Chem 63(1):24–28. doi:10.1021/ac00001a005 CrossRefGoogle Scholar
  19. 19.
    Chow RH, von Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356(6364):60–63CrossRefGoogle Scholar
  20. 20.
    Chow RH, Klingauf J, Neher E (1994) Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. P Natl Acad Sci USA 91(26):12765–12769CrossRefGoogle Scholar
  21. 21.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639. doi:10.1021/ac60214a047 CrossRefGoogle Scholar
  22. 22.
    Mueller-Klieser WF, Sutherland RM (1982) Oxygen tensions in multicell spheroids of two cell lines. Br J Cancer 45(2):256–264CrossRefGoogle Scholar
  23. 23.
    Sutherland RM, MacDonald HR, Howell RL (1977) Multicellular spheroids: a new model target for in vitro studies of immunity to solid tumor allografts. J Natl Cancer Inst 58(6):1849–1853Google Scholar
  24. 24.
    Kissinger P, Heineman W (1996) Laboratory techniques in electroanalytical chemistry. Marcel Dekker.Google Scholar
  25. 25.
    Robinson DL, Phillips PE, Budygin EA, Trafton BJ, Garris PA, Wightman RM (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 12(11):2549–2552CrossRefGoogle Scholar
  26. 26.
    Heien MLAV, Phillips PEM, Stuber GD, Seipel AT, Wightman RM (2003) Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128(12):1413–1419CrossRefGoogle Scholar
  27. 27.
    Zerby SE, Ewing AG (1996) Electrochemical monitoring of individual exocytotic events from the varicosities of differentiated PC12 cells. Brain Res 712(1):1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations