Skip to main content
Log in

Metabolite profiling and beyond: approaches for the rapid processing and annotation of human blood serum mass spectrometry data

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we describe data processing and metabolite identification approaches which lead to a rapid and semi-automated interpretation of metabolomics experiments. Data from metabolite fingerprinting using LC-ESI-Q-TOF/MS were processed with several open-source software packages, including XCMS and CAMERA to detect features and group features into compound spectra. Next, we describe the automatic scheduling of tandem mass spectrometry (MS) acquisitions to acquire a large number of MS/MS spectra, and the subsequent processing and computer-assisted annotation towards identification using the R packages MetShot, Rdisop, and the MetFusion application. We also implement a simple retention time prediction model using predicted lipophilicity logD, which predicts retention times within 42 s (6 min gradient) for most compounds in our setup. We putatively identified 44 common metabolites including several amino acids and phospholipids at metabolomics standards initiative (MSI) levels two and three and confirmed the majority of them by comparison with authentic standards at MSI level one. To aid both data integration within and data sharing between laboratories, we integrated data from two labs and mapped retention times between the chromatographic systems. Despite the different MS instrumentation and different chromatographic gradient programs, the mapped retention times agree within 26 s (20 min gradient) for 90 % of the mapped features.

Workflow for the rapid processing and annotation of untargeted mass spectrometry data

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435–25442

    Article  CAS  Google Scholar 

  2. Roux A, Lison D, Junot C et al (2011) Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: a review. Clin Biochem 44:119–135

    Article  CAS  Google Scholar 

  3. Jones DP, Park Y, Ziegler TR (2012) Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr 32:183–202

    Article  CAS  Google Scholar 

  4. Holmer-Jensen J, Hartvigsen ML, Mortensen LS et al (2012) Acute differential effects of milk-derived dietary proteins on postprandial lipaemia in obese non-diabetic subjects. Eur J Clin Nutr 66:32–38

    Article  CAS  Google Scholar 

  5. Sumner L, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221

    Article  CAS  Google Scholar 

  6. Vaughan AA, Dunn WB, Allwood JW et al (2012) Liquid chromatography–mass spectrometry calibration transfer and metabolomics data fusion. Anal Chem 84:9848–9857

    Article  CAS  Google Scholar 

  7. Dunn WB, Erban A, Weber RJM et al (2013) Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9:44–66

    Article  CAS  Google Scholar 

  8. Creek DJ, Jankevics A, Breitling R et al (2011) Toward global metabolomics analysis with hydrophilic interaction liquid chromatography–mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem 83:8703–8710

    Article  CAS  Google Scholar 

  9. Menikarachchi LC, Cawley S, Hill DW et al (2012) MolFind: a software package enabling HPLC/MS-based identification of unknown chemical structures. Anal Chem 84:9388–9394

    CAS  Google Scholar 

  10. Hall LM, Hall LH, Kertesz TM et al (2012) Development of Ecom50 and retention index models for nontargeted metabolomics: identification of 1,3-dicyclohexylurea in human serum by HPLC/mass spectrometry. J Chem Inf Model 52:1222–1237

    Article  CAS  Google Scholar 

  11. Boswell PG, Schellenberg JR, Carr PW et al (2011) Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradient and flow rate profiles. J Chromatogr A 1218:6742–6749

    Article  CAS  Google Scholar 

  12. Boswell PG, Schellenberg JR, Carr PW et al (2011) A study on retention “projection” as a supplementary means for compound identification by liquid chromatography–mass spectrometry capable of predicting retention with different gradients, flow rates, and instruments. J Chromatogr A 1218:6732–6741

    Article  CAS  Google Scholar 

  13. Neumann S, Thum A, Böttcher C (2013) Nearline acquisition and processing of liquid chromatography–tandem mass spectrometry data. Metabolomics 9:84–91

    Article  CAS  Google Scholar 

  14. Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. Eur J Mass Spectrom 45:703–714

    Article  CAS  Google Scholar 

  15. Smith C, Maille G, Want E et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  Google Scholar 

  16. Wishart DS, Knox C, Guo AC et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610

    Article  CAS  Google Scholar 

  17. Wolf S, Schmidt S, Müller-Hannemann M et al (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinf 11:148

    Article  Google Scholar 

  18. Williams AJ (2011) Chemspider: a platform for crowdsourced collaboration to curate data derived from public compound databases. In: Ekins S, Hupcey MAZ, Williams AJ (eds) Collaborative computational technologies for biomedical research. Wiley, New York, pp 363–386

    Chapter  Google Scholar 

  19. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  Google Scholar 

  20. Bolton EE, Wang Y, Thiessen PA et al (2008) Chapter 12 PubChem: integrated platform of small molecules and biological activities. In: Wheeler RA, Spellmeyer DC (eds) Annual reports in computational chemistry. Elsevier, Amsterdam, pp. 217–241

  21. Gerlich M, Neumann S (2013) MetFusion: integration of compound identification strategies. J Mass Spectrom 48:291–298

    Article  CAS  Google Scholar 

  22. Pete MJ, Exton JH (1996) Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J Biol Chem 271:18114–18121

    Article  CAS  Google Scholar 

  23. BD Biosciences (2013) Mammalian liver cytosol—guidelines for use (TF000016 Rev 1.0)

  24. Nelson AC, Huang W, Moody DE (2001) Variables in human liver microsome preparation: impact on the kinetics of l-α-acetylmethadol (LAAM) N-demethylation and dextromethorphan O-demethylation. Drug Metab Dispos 29:319–325

    CAS  Google Scholar 

  25. Gürdeniz G, Kristensen M, Skov T et al (2012) The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats. Metabolites 2:77–99

    Article  Google Scholar 

  26. Tautenhahn R, Böttcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinf 9:504

    Article  Google Scholar 

  27. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

  28. Böcker S, Letzel M, Lipták Z et al (2006) Decomposing metabolomic isotope patterns. In: Bücher P, Moret B (eds) Algorithms in bioinformatics. Springer, Berlin, pp. 12–23

  29. Cao Y, Charisi A, Cheng L-C et al (2008) ChemmineR: a compound mining framework for R. Bioinformatics 24:1733–1734

    Article  CAS  Google Scholar 

  30. Scheder R (2007) monoProc: strictly monotone smoothing procedure

  31. Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinf 7:234

    Article  Google Scholar 

  32. Tihanyi K, Vastag M (2011) Solubility, delivery and ADME problems of drugs and drug-candidates. Bentham Science Publishers, Sharjah

  33. Croset M, Brossard N, Polette A et al (2000) Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J 345:61–67

    Article  CAS  Google Scholar 

  34. Creer M, Gross R (1985) Separation of isomeric lysophospholipids by reverse phase HPLC. Lipids 20:922–928

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christoph Böttcher and Stefan Schmidt for the mass spectrometry support in Halle and Carsten Kuhl and Sebastian Wolf for help with the data analysis and the CAMERA and MetFrag tools. Jens Holmer-Jensen and Kjeld Hermansen are thanked for providing the sample set used for isotope pattern analyses. The work by JS was supported by the Nordic Centre of Excellence (NCoE) program (systems biology in controlled dietary interventions and cohort studies (SYSDIET), P No., 070014) and the Danish Obesity Research Centre (DanORC; see www.danorc.dk). DanORC is supported by the Danish Council for Strategic Research (Grant No. 2101-06-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Stanstrup.

Additional information

Published in the topical collection Metabolomics and Metabolite Profiling with guest editors Rainer Schuhmacher, Rudolf Krska, Roy Goodacre, and Wolfram Weckwerth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 97.7 kb)

ESM 2

(PDF 18.2 kb)

ESM 3

(PDF 110 kb)

ESM 4

(PDF 81.5 kb)

ESM 5

(PDF 26.8 kb)

ESM 6

(PDF 70.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanstrup, J., Gerlich, M., Dragsted, L.O. et al. Metabolite profiling and beyond: approaches for the rapid processing and annotation of human blood serum mass spectrometry data. Anal Bioanal Chem 405, 5037–5048 (2013). https://doi.org/10.1007/s00216-013-6954-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6954-6

Keywords

Navigation