Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 16, pp 5455–5466 | Cite as

Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing

  • Thomas PiperEmail author
  • Caroline Emery
  • Andreas Thomas
  • Martial Saugy
  • Mario Thevis
Research Paper

Abstract

Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n = 67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical power and certainty to distinguish between the endo- or exogenous origin of a urinary steroid.

Keywords

Reference population Carbon isotope ratio Hydrogen isotope ratio Doping control Steroid metabolism 

Notes

Acknowledgments

This project was partly funded by the Federal Ministry of the Interior of the Federal Republic of Germany and the Manfred Donike Institute for Doping Analysis, Cologne.

Supplementary material

216_2013_6949_MOESM1_ESM.pdf (166 kb)
ESM 1 (PDF 165 kb)

References

  1. 1.
    Ueki M, Okano M (1999) Analysis of exogenous dehydroepiandrosterone excretion in urine by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 13:2237–2243CrossRefGoogle Scholar
  2. 2.
    Aguilera R, Chapman TE, Starcevic B, Hatton CK, Catlin DH (2001) Performance characteristics of a carbon isotope ratio method for detecting doping with testosterone based on urine diols: controls and athletes with elevated testosterone/epitestosterone ratios. Clin Chem 47:292–300Google Scholar
  3. 3.
    Aguilera R, Hatton CK, Catlin DH (2002) Detection of epitestosterone doping by isotope ratio mass spectrometry. Clin Chem 48:629–636Google Scholar
  4. 4.
    Flenker U, Güntner U, Schänzer W (2008) δ13C-values of endogenous urinary steroids. Steroids 73:408–416CrossRefGoogle Scholar
  5. 5.
    Piper T, Mareck U, Geyer H, Flenker U, Thevis M, Platen P, Schänzer W (2008) Determination of 13C/12C ratios of endogenous urinary steroids: method validation, reference population and application to doping control purposes. Rapid Commun Mass Spectrom 22:2161–2175CrossRefGoogle Scholar
  6. 6.
    Cawley AT, Trout GJ, Kazlauskas R, Howe CJ, George AV (2009) Carbon isotope ratio (δ13C) values of urinary steroids for doping control in sport. Steroids 74:379–392CrossRefGoogle Scholar
  7. 7.
    Piper T, Flenker U, Mareck U, Schänzer W (2009) 13C/12C ratios of endogenous urinary steroids investigated for doping control purposes. Drug Test Anal 1:65–72CrossRefGoogle Scholar
  8. 8.
    Strahm E, Emery C, Saugy M, Dvorak J, Saudan C (2009) Detection of testosterone administration based on the carbon isotope ratio profiling of endogenous steroids: international reference populations of professional soccer players. Br J Sports Med 43:1041–1044CrossRefGoogle Scholar
  9. 9.
    Piper T, Riemann P, Opfermann G, Mareck U, Geyer H, Vajiala G, Flenker U, Schänzer W (2009) Determination of 13C/12C ratios of urinary epitestosterone and its main metabolites 5α- and 5β-androstane-3α,17α-diol. Drug Test Anal 1:576–586CrossRefGoogle Scholar
  10. 10.
    Sobolevsky T, Prasolov IS, Rodchenkov G (2010) Carbon isotope mass spectrometry in doping control. J Anal Chem 65:825–832CrossRefGoogle Scholar
  11. 11.
    Piper T, Opfermann G, Thevis M, Schänzer W (2010) Determination of 13C/12C ratios of endogenous urinary steroids excreted as sulpho conjugates. Rapid Commun Mass Spectrom 24:3171–3181CrossRefGoogle Scholar
  12. 12.
    Piper T, Fusshöller G, Emery C, Schänzer W, Saugy M (2012) Investigations on carbon isotope ratios and concentrations of urinary formestane. Drug Test Anal 4:942–950CrossRefGoogle Scholar
  13. 13.
    Piper T, Thomas A, Thevis M, Saugy M (2012) Investigations on hydrogen isotope ratios of endogenous urinary steroids: reference population based thresholds and proof-of-concept. Drug Test Anal 4:717–727CrossRefGoogle Scholar
  14. 14.
    de la Torre X, Colamonici C, Curcio D, Molaioni F, Botre F (2012) A comprehensive procedure based on gas chromatography-isotope ratio mass spectrometry following high performance liquid chromatography purification for the analysis of underivatized testosterone and its analogues in human urine. Anal Chim Acta 756:23–29CrossRefGoogle Scholar
  15. 15.
    Coplen TB (2011) Guidelines and recommended terms of expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560Google Scholar
  16. 16.
  17. 17.
    Michal G (1999) Biochemical pathways. Spektrum Akademischer, HeidelbergGoogle Scholar
  18. 18.
    Piper T, Baume N, Strahm E, Emery C, Saugy M (2012) Influences of β-HCG administration on carbon isotope ratios of endogenous urinary steroids. Steroids 77:644–654CrossRefGoogle Scholar
  19. 19.
    Solberg HE (1993) A guide to IFCC recommendations on reference values. J Int Fed Clin Chem 5:162–166Google Scholar
  20. 20.
    Solberg HE. The IFCC recommendation on estimation of reference intervals. The RefVal Program. Clin Chem Lab Med 42:710–714 (and references therein)Google Scholar
  21. 21.
    Zhang Y, Tobias HJ, Brenna JT (2009) Steroid isotopic standards for gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS). Steroids 74:369–378CrossRefGoogle Scholar
  22. 22.
    Cawley A, Collins M, Kazlauskas R, Handelsman DJ, Heywood R, Longworth M, Arenas-Queralt A (2010) Stable isotope ratio profiling of testosterone preparations. Drug Test Anal 2:557–567CrossRefGoogle Scholar
  23. 23.
    Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519CrossRefGoogle Scholar
  24. 24.
    Docherty G, Jones V, Evershed P (2001) Practical and theoretical considerations in the gas chromatography/combustion/isotope ratio mass spectrometry δ13C analysis of small polyfunctional compounds. Rapid Commun Mass Spectrom 15:730–738CrossRefGoogle Scholar
  25. 25.
    Forsdahl G, Östreicher C, Koller M, Gmeiner G (2011) Carbon isotope ratio determination and investigation of seized testosterone preparations. Drug Test Anal 3:814–819CrossRefGoogle Scholar
  26. 26.
    Kaunzinger A, Juchelka D, Mosandl A (1997) Progress in the authenticity assessment of vanilla. 1. Initiation of authenticity profiles. J Agric Food Chem 45:1752–1757CrossRefGoogle Scholar
  27. 27.
    Cawley A, Flenker U (2008) The application of carbon isotope ratio mass spectrometry to doping control. J Mass Spectrom 43:854–864CrossRefGoogle Scholar
  28. 28.
    Piper T, Geyer H, Gougoulidis V, Flenker U, Schänzer W (2010) Determination of 13C/12C ratios of urinary excreted boldenone and its main metabolite 5β-androst-1-en-17β-ol-3-one. Drug Test Anal 2:217–224CrossRefGoogle Scholar
  29. 29.
    de la Torre X, Colamonici C, Curcio D, Molaioni F, Pizzardi M, Botre F (2011) A simplified procedure for GC/C/IRMS analysis of underivatized 19-norandrosterone in urine following HPLC purification. Steroids 76:471–477CrossRefGoogle Scholar
  30. 30.
    Braunsdorf R, Hener U, Przibilla G, Piecha S, Mosandl A (1993) Analytische und technologische Einflüsse auf das 13C/12C-Isotopenverhältnis von Orangenöl-Komponenten. Z Lebensm Unters Forsch 197:24–28CrossRefGoogle Scholar
  31. 31.
    Filer CN (1999) Isotopic fractionation of organic compounds in chromatography. J Labelled Cdp Radiopharm 42:169–197CrossRefGoogle Scholar
  32. 32.
    Piper T, Emery C, Saugy M (2011) Recent developments in the use of isotope ratio mass spectrometry in sports drug testing. Anal Bioanal Chem 401:433–447CrossRefGoogle Scholar
  33. 33.
    Korenman SG, Wilson H (1966) On the role of androstendione and testosterone as precursors of urinary androsterone and 5β-androsterone. Steroids 8:729–737CrossRefGoogle Scholar
  34. 34.
    Robel P, Emiliozzi R, Baulieu EE (1966) Studies on testosterone metabolism. III. The selective “5β-metabolism” of testosterone glucuronide. J Biol Chem 241:20–29Google Scholar
  35. 35.
    Mauvis-Jarvis P, Floch H, Jung I, Robel P, Baulieu EE (1968) Studies on testosterone metabolism. VI. Precursors of urinary androstanediols. Steroids 11:207–224CrossRefGoogle Scholar
  36. 36.
    Peng SH, Segura J, Farré M, Gonzalez JC, de la Torre X (2002) Plasma and urinary markers of oral testosterone undecanoate misuse. Steroids 67:39–50CrossRefGoogle Scholar
  37. 37.
    Horton R, Tait JF (1966) Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of its conversion to testosterone. J Clin Investig 45:301–313CrossRefGoogle Scholar
  38. 38.
    Schmidt HL, Werner RA, Eisenreich W (2003) Sytematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochem Rev 2:61–85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Piper
    • 1
    • 2
    Email author
  • Caroline Emery
    • 2
  • Andreas Thomas
    • 1
  • Martial Saugy
    • 2
  • Mario Thevis
    • 1
  1. 1.Center for Preventive Doping Research—Institute of BiochemistryGerman Sport University CologneKölnGermany
  2. 2.Swiss Laboratory for Doping AnalysisUniversity Center of Legal Medicine, Geneva and Lausanne, Centre Hospitalier Universitaire Vaudois and University LausanneEpalingesSwitzerland

Personalised recommendations