Skip to main content
Log in

Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20, v/v), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55–80 and 58–79 %, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127–132 and 82–120 % higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography–mass spectrometry and found to be in good agreement.

Principle of the competitive chemiluminescence ELISA using the microarray chip

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shephard GS (2008) Chem Soc Rev 37:2468–2477

    Article  CAS  Google Scholar 

  2. Urusov AE, Zherdev AV, Dzantiev BB (2010) Appl Biochem Microbiol 46:276–290

    Article  CAS  Google Scholar 

  3. Prieto-Simon B, Karube I, Saiki H (2012) Food Chem 135:1323–1329

    Article  CAS  Google Scholar 

  4. Li Y, Liu X, Lin Z (2012) Food Chem 132:1549–1554

    Article  CAS  Google Scholar 

  5. Czeh A, Mandy F, Feher-Toth S, Torok L, Mike Z, Koszegi B, Lustyk GJ (2012) Immunol Methods 384:71–80

    Article  CAS  Google Scholar 

  6. Bondarenko AP, Eremin SA (2012) J Anal Chem 67:790–794

    Article  CAS  Google Scholar 

  7. Commission regulation (EC) No 1881/2006 (2006) Off J Eur Union 364:5–24

    Google Scholar 

  8. Commission regulation (EC) No 1126/2007 (2007) Off J Eur Union 255:14–17

    Google Scholar 

  9. IARC (1993) International Agency for Research in Cancer, Lyon, France. IARC 57:427–794

    Google Scholar 

  10. Köppen R, Koch M, Siegel D, Merkel S, Maul R, Nehls I (2010) Appl Microbiol Biotechnol 86:1595–1612

    Article  Google Scholar 

  11. Kralj Cigic I, Prosen H (2009) Int J Mol Sci 10:62–115

    Article  Google Scholar 

  12. Shephard GS, Berthiller F, Burdaspal PA, Crews C, Jonker MA, Krska R, MacDonald S, Malone RJ, Maragos C, Sabino M, Solfrizzo M, Van Egmond HP, Whitaker TB (2012) World Mycotox J 5:3–30

    Article  CAS  Google Scholar 

  13. Hajslova J, Zachariasova M, Cajka T (2011) Mass spectrometry in food safety: methods and protocols. In: Zweigenbaum J (ed) Methods in molecular biology, 747th edn. Humana Press, New York, pp 233–258

    Google Scholar 

  14. Herebian D, Zühlke S, Lamshöft M, Spiteller M (2009) J Sep Sci 32:939–948

    Article  CAS  Google Scholar 

  15. Sulyok M, Krska R, Schuhmacher R (2010) Food Chem 119:408–416

    Article  CAS  Google Scholar 

  16. Monbaliu S, van Poucke C, Detavernier C, Dumoulin F, van de Velde M, Schoeters E, van Dyck S, Averkieva O, van Peteghem C, De Saeger S (2010) J Agric Food Chem 58:66–71

    Google Scholar 

  17. Krska R, Schubert-Ullrich P, Molinelli A, Sulyok M, MacDonald S, Crews C (2008) Food Addit Contam 25:152–163

    Article  CAS  Google Scholar 

  18. Cichna-Markl M (2011) World Mycotox J 4:203–215

    Article  CAS  Google Scholar 

  19. Cervino C, Asam S, Knopp D, Rychlik M, Niessner R (2008) J Agric Food Chem 56:1873–1879

    Article  CAS  Google Scholar 

  20. Shephard GS et al (2011) World Mycotox J 4:3–2421

    Article  CAS  Google Scholar 

  21. Lippolis V et al (2011) Anal Bioanal Chem 401:2561–2571

    Article  CAS  Google Scholar 

  22. Li P, Zhang Q, Zhang W (2009) Trends Anal Chem 28:1115–1126

    Article  CAS  Google Scholar 

  23. Liao J, Li H (2010) Microchim Acta 171:289–295

    Article  CAS  Google Scholar 

  24. Tang D, Sauceda JC, Lin Z, Ott S, Basova E, Goryacheva I, Biselli S, Lin J, Niessner R, Knopp D (2009) Biosens Bioelectron 25:514–518

    Article  CAS  Google Scholar 

  25. Basova EY, Goryacheva IY, Rusanova TY, Burmistrova NA, Dietrich R, Märtlbauer E, Detavernier C, Van Peteghem C, De Saeger S (2010) Anal Bioanal Chem 397:55–62

    Article  CAS  Google Scholar 

  26. Beloglazova NV, Speranskaya ES, De Saeger S, Hens Z, Abé S, Goryacheva IY (2012) Anal Bioanal Chem 403:3013–2024

    Article  CAS  Google Scholar 

  27. Lattanzio VMT, Nivarlet N, Lippolis V, Gatta DS, Huet A-C, Delahaut P, Granier B, Visconti A (2012) Anal Chim Acta 718:99–108

    Article  CAS  Google Scholar 

  28. Zheng MZ, Richard JL, Binder J (2006) Mycopathologia 161:261–273

    Article  CAS  Google Scholar 

  29. Li P, Zhang Z, Zhang Q, Zhang N, Zhang W, Ding X, Li R (2012) Electrophoresis 33:2253–2265

    Article  CAS  Google Scholar 

  30. Njumbe Ediage E, Di Mavungu JD, Goryacheva IY, Van Peteghem C, De Saeger S (2012) Anal Bioanal Chem 403:265–278

    Article  CAS  Google Scholar 

  31. Anfossi L, Baggiani C, Giovannoli C, D’Arco G, Giraudi G (2013) Anal Bioanal Chem 405:467–480

    Article  CAS  Google Scholar 

  32. Kos G, Lohninger H, Krska R (2003) Anal Chem 75:1211–1217

    Article  CAS  Google Scholar 

  33. Rasch C, Kumke M, Löhmannsröben HG (2010) Food Bioprocess Technol 3:908–916

    Article  CAS  Google Scholar 

  34. Maragos CM (2009) World Mycotox J 2:221–238

    Article  CAS  Google Scholar 

  35. Moises SS, Schäferling M (2009) Bioanal Rev 1:73–104

    Article  Google Scholar 

  36. Tothill IE (2011) World Mycotox J 4:361–374

    Article  CAS  Google Scholar 

  37. Peters J, Bienenmann-Ploum M, De Rijk T, Haasnoot W (2011) Mycotox Res 27:63–72

    Article  CAS  Google Scholar 

  38. Dorokhin D, Haasnoot W, Franssen MCR, Zuilhof H, Nielen MWF (2011) Anal Bioanal Chem 400:3005–3011

    Article  CAS  Google Scholar 

  39. Kloth K, Niessner R, Seidel M (2009) Biosen Bioelectron 24:2106–2112

    Article  CAS  Google Scholar 

  40. Kloth K, Rye-Johnsen M, Didier A, Dietrich R, Märtlbauer E, Niessner R, Seidel M (2009) Analyst 134:1433–1439

    Article  CAS  Google Scholar 

  41. Sauceda-Friebe J, Karsunke XYZ, Vazac S, Biselli S, Niessner R, Knopp D (2011) Anal Chim Acta 689:234–242

    Article  CAS  Google Scholar 

  42. Cervino C, Weber E, Knopp D, Niessner R (2008) J Immunol Methods 329:184–193

    Article  CAS  Google Scholar 

  43. Chu FS, Hsia MTS, Sun PS (1977) J Assoc Off Anal Chem Int 60:791–794

    CAS  Google Scholar 

  44. Usleber E, Märtlbauer E, Dietrich R, Terplan G (1991) J Agric Food Chem 39:2091–2095

    Article  CAS  Google Scholar 

  45. Wolter A, Niessner R, Seidel M (2007) Anal Chem 79:4529–4537

    Article  CAS  Google Scholar 

  46. Pope ME, Soste MV, Eyford BA, Anderson NL, Pearson TW (2009) J Immunol Methods 341:86–96

    Article  CAS  Google Scholar 

  47. Tittlemier SA, Roscoe M, Drul D, Blagden R, Kobialka C, Chan J, Gaba D (2013) Mycotoxin Res 29:55–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V. Bonn); project AiF 381 ZN. Further, the authors thank Dr. T. Westermair and Dr. P. Walser (muva Kempten) for LC-MS analysis of deoxynivalenol in grain samples and Martina Kirsch, Rosenmühle Landshut (Germany) for providing naturally contaminated grain samples and performing analysis of deoxynivalenol by the aokinmycontrol® system. We are also grateful to Dr. G. Lystik (Soft Flow Biotechnology, Gödöllo, Hungary) for providing the anti-OTA monoclonal antibody and Huntsman Corporation for the free samples of DAPEG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Knopp.

Additional information

This paper is dedicated to Professor Franz Dickert on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oswald, S., Karsunke, X.Y.Z., Dietrich, R. et al. Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem 405, 6405–6415 (2013). https://doi.org/10.1007/s00216-013-6920-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6920-3

Keywords

Navigation