Skip to main content
Log in

Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel strategy for preparation of a boronate affinity hybrid monolith was developed using a Cu(I)-catalyzed 1,3-dipolar azide–alkyne cycloaddition (CuAAC) reaction of an alkyne–boronate ligand with an azide-functionalized monolithic intermediate. An azide-functionalized hybrid monolith was first synthesized via a single-step procedure to provide reactive sites for click chemistry; then the alkyne–boronate ligands were covalently immobilized on the azide-functionalized hybrid monolith via an in-column CuAAC reaction to form a boronate affinity hybrid monolith under mild conditions. The boronate affinity monolith was characterized and evaluated by means of elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The boronate affinity hybrid monolith exhibited excellent specificity toward nucleosides and glycoproteins, which were chosen as test cis-diol-containing compounds under neutral conditions. The binding capacity of the monolith for the glycoprotein ovalbumin was 2.36 mg · g-1 at pH 7.0. The practicability of the boronate affinity hybrid monolithic material was demonstrated by specific capture of the glycoproteins ovalbumin and ovotransferrin from an egg sample.

A novel strategy for preparation of boronate affinity hybrid monolith was developed by utilizing Cu(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction (CuAAC). The obtained boronate affinity hybrid monolith exhibited excellent performance for isolation and enrichment of nucleosides and glycoproteins and was successfully employed to specific capture of glycoproteins from the egg sample

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Parodi AJ (2000) Annu Rev Biochem 69:69–93

    Article  CAS  Google Scholar 

  2. Helenius A, Aebi M (2001) Science 291:2364–2369

    Article  CAS  Google Scholar 

  3. Reis CA, Osorio H, Silva L, Gomes C, David L (2010) J Clin Pathol 63:322–329

    Article  CAS  Google Scholar 

  4. Narimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y (2010) FEBS J 277:95–105

    Article  CAS  Google Scholar 

  5. Hägglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) J Proteome Res 3:556–566

    Article  Google Scholar 

  6. Jmeian Y, Hammad LA, Mechref Y (2012) Anal Chem 84:8790–8796

    Article  CAS  Google Scholar 

  7. Chen R, Jiang XN, Sun DG, Han GH, Wang FJ, Ye ML, Wang LM, Zou HF (2009) J Proteome Res 8:651–661

    Article  CAS  Google Scholar 

  8. Monzo A, Bonn GK, Guttman A (2007) Trends Anal Chem 26:423–432

    Article  CAS  Google Scholar 

  9. Feng S, Yang N, Pennathur S, Goodison S, Lubman DM (2009) Anal Chem 81:3776–3783

    Article  CAS  Google Scholar 

  10. Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K, Takahashi N, Isobe T (2003) Nat Biotechnol 21:667–672

    Article  CAS  Google Scholar 

  11. Tang J, Liu YC, Qi DW, Yao GP, Deng CH, Zhang XM (2009) Proteomics 9:5046–5055

    Article  CAS  Google Scholar 

  12. Lin ZA, Zheng JN, Lin F, Zhang L, Cai ZW, Chen GN (2011) J Mater Chem 21:518–524

    Article  CAS  Google Scholar 

  13. Lin ZA, Zheng JG, Xia ZW, Yang HH, Zhang L, Chen GN (2012) RSC Adv 2:5062–5065

    Article  CAS  Google Scholar 

  14. Zhang XH, He XW, Chen LX, Zhang YK (2012) J Mater Chem 22:16520–16526

    Article  CAS  Google Scholar 

  15. Li HY, Liu Z (2012) Trends Anal Chem 37:148–161

    Article  CAS  Google Scholar 

  16. Liu X-C, Scouten WH (2000) In: Bailon P, Ehrlich GK, Fung W-J, Berthold W (eds) Affinity chromatography: methods and protocols. Methods in molecular biology, vol 147. Humana, Totowa, pp 119–128

    Chapter  Google Scholar 

  17. Lin ZA, Pan JL, Yang HH, Cai ZW, Zhang L, Chen GN (2011) Chem Commun 47:9675–9677

    Article  CAS  Google Scholar 

  18. Yang F, Lin ZA, He XW, Chen LX, Zhang YK (2011) J Chromatogr A 1218:9194–9201

    Article  CAS  Google Scholar 

  19. Liu YC, Ren LB, Liu Z (2011) Chem Commun 47:5067–5069

    Article  CAS  Google Scholar 

  20. Chen M, Lu Y, Ma Q, Guo L, Feng YQ (2009) Analyst 134:2158–2164

    Article  CAS  Google Scholar 

  21. Lin ZA, Pan JL, Lin Y, Huang H, Cai ZW, Zhang L, Chen GN (2011) Analyst 136:3281–3288

    Article  CAS  Google Scholar 

  22. Ren LB, Liu YC, Dong MM, Liu Z (2009) J Chromatogr A 1216:8421–8425

    Article  CAS  Google Scholar 

  23. Li HY, Wang HY, Liu YC, Liu Z (2012) Chem Commun 48:4115–4117

    Article  CAS  Google Scholar 

  24. Li QJ, Lü CC, Li HY, Liu YC, Wang HY, Wang X, Liu Z (2012) J Chromatogr A 1256:114–120

    Article  CAS  Google Scholar 

  25. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  26. Moses JE, Moorhouse AD (2007) Chem Soc Rev 36:1249–1262

    Article  CAS  Google Scholar 

  27. Slater M, Snauko M, Svec F, Fréchet JMJ (2006) Anal Chem 78:4969–4975

    Article  CAS  Google Scholar 

  28. Huang HX, Jin Y, Xue MY, Yu L, Fu Q, Ke YX, Chu CH, Liang XM (2009) Chem Commun 6973–6975

  29. Moni L, Ciogli A, Acquarica ID, Dondoni A, Gasparrini F, Marra A (2010) Chem Eur J 16:5712–5722

    Article  CAS  Google Scholar 

  30. Suksrichavalit T, Yoshimatsu K, Prachayasittikul V, Bulow L, Ye L (2010) J Chromatogr A 1217:3635–3641

    Article  CAS  Google Scholar 

  31. White MA, Johnson JA, Koberstein JT, Turro NJ (2006) J Am Chem Soc 128:11356–11357

    Article  CAS  Google Scholar 

  32. Jian GQ, Liu YX, He XW, Chen LX, Zhang YK (2012) Nanoscale 4:6336–6342

    Article  CAS  Google Scholar 

  33. Chu CH, Liu RH (2011) Chem Soc Rev 40:2177–2188

    Article  CAS  Google Scholar 

  34. Guerrouache M, Millot MC, Carbonnier B (2009) Macromol Rapid Commun 30:109–113

    Article  CAS  Google Scholar 

  35. Slater MD, Fréchet JMJ, Svec F (2009) J Sep Sci 32:21–28

    Article  CAS  Google Scholar 

  36. Sun XL, Lin D, He XW, Chen LX, Zhang YK (2010) Talanta 82:404–408

    Article  CAS  Google Scholar 

  37. Sun XL, He XW, Chen LX, Zhang YK (2011) Anal Bioanal Chem 399:3407–3413

    Article  CAS  Google Scholar 

  38. Wang FJ, Dong J, Jiang XG, Ye ML, Zou HF (2007) Anal Chem 79:6599–6606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Basic Research Program of China (no. 2012CB910601), the National Natural Science Foundation of China (no. 20935001, 21275080), the Research Fund for the Doctoral Program of Higher Education of China (no. 20120031110007), and the Natural Science Foundation of Tianjin (no. 10JCZDJC17600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. X. Chen or Y. K. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Mao, J., He, X.W. et al. Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins. Anal Bioanal Chem 405, 5321–5331 (2013). https://doi.org/10.1007/s00216-013-6917-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6917-y

Keywords

Navigation