Skip to main content
Log in

Preparation techniques alter the mineral and organic fractions of fish otoliths: insights using Raman micro-spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The high spatial resolution analysis of the mineral and organic composition of otoliths using Raman micro-spectrometry involves rigorous protocols for sample preparation previously established for microchemistry and trace elements analyses. These protocols often include otolith embedding in chemically neutral resin (i.e., resins which do not contain, in detectable concentration, elements usually sought in the otoliths). Such embedding may however induce organic contamination. In this paper, Raman micro-spectrometry reveals the presence of organic contamination onto the surface obtained from the use of epoxy resin, specifically Araldite. This contamination level varies depending on otolith structures. Core and checks, known as structural discontinuities, exhibit the most important level of contaminations. Our results suggest that otolith embedding with resin affects the organic matrix of the otolith, probably through an infiltration of the resin in the crystalline structure. The interpretation of chemical otolith signatures, especially Raman otolith signatures, and stable isotope analyses should then be revised in light of these results. In this respect, we propose a method for the correction of Raman otolith signatures for contamination effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Mar Biol 2:105–113

    Article  CAS  Google Scholar 

  2. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  3. Fromentin JM, Ernande B, Fablet R, de Pontual H (2009) Importance and future of individual markers for the ecosystem approach to fisheries. Aquat Living Resour 22:395–408

    Article  CAS  Google Scholar 

  4. Arslan Z, Secor DH (2008) High resolution micromill sampling for analysis of fish otoliths by ICP-MS: effects of sampling and specimen preparation on trace element fingerprints. Mar Environ Res 66:364–371

    Article  CAS  Google Scholar 

  5. Benoit G, Hunter KS, Rozan TF (1997) Sources of trace metal contamination artifacts during collection, handling, and analysis of freshwater. Anal Chem 69(6):1006–1011

    Article  CAS  Google Scholar 

  6. Proctor CH, Thresher RE (1998) Effects of specimen handling and otolith preparation on concentration of elements in fish otoliths. Mar Biol 131:681–694

    Article  Google Scholar 

  7. Rooker JR, Zdanowicz VS, Secor DH (2001) Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Mar Biol 139:35–43

    Google Scholar 

  8. de Pontual H, Geffen AJ (2002) Otolith microchemistry. In: Panfili J, de Pontual H, Troadec H, Wright PJ (eds) Manual of fish sclerochronology. Coedition Ifremer-IRD, Brest, pp 243–303

    Google Scholar 

  9. Dauphin Y, Dufour E (2003) Composition and properties of the soluble organic matrix of the otolith of a marine fish: Gadus morhua Linne, 1758 (Teleostei, Gadidae). Comp Biochem Physiol A Physiol 134A:551–561

    Article  CAS  Google Scholar 

  10. Gauldie RW (1999) Ultrastructure of lamellae, mineral and matrix components of fish otolith twinned aragonite crystals implications for estimating age in fish. Tissue Cell 31(2):138–153

    Article  CAS  Google Scholar 

  11. Jolivet A, Bardeau J-F, Fablet R, Paulet Y-M, de Pontual H (2008) Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman micro-spectrometry. Anal Bioanal Chem 392:551–560

    Article  CAS  Google Scholar 

  12. Zhang F, Cai W, Sun Z, Zhang J (2008) Regular variations in organic matrix composition of small yellow croaker (Pseudociaena polyactis) otoliths: an in situ Raman microspectrometry and mapping study. Anal Bioanal Chem 390(2):777–782

    Article  CAS  Google Scholar 

  13. Hedegaard C, Bardeau J-F, Chateigner D (2006) Molluscan shell pigments: an in situ resonance Raman study. J Molluscan Stud 72(2):157–162

    Article  Google Scholar 

  14. Urmos J, Sharma SK, Mackenzie FT (1991) Characterization of some biogenic carbonates with Raman spectroscopy. Am Mineral 76(3–4):641–646

    CAS  Google Scholar 

  15. Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    Article  CAS  Google Scholar 

  16. Gauldie RW, Sharma SK, Volk E (1997) Micro-Raman spectral study of vaterite and aragonite otoliths of the Coho Salmon, Oncorhynchus kisutch. Comp Biochem Physiol A Physiol 118(3):753–757

    Article  Google Scholar 

  17. Melancon S, Fryer BJ, Ludsin SA, Gagnon JE, Yang ZP (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can J Fish Aquat Sci 62(11):2609–2619

    Article  CAS  Google Scholar 

  18. Tomás J, Geffen AJ (2003) Morphometry and composition of aragonite and vaterite otoliths of deformed laboratory reared juvenile herring from two populations. J Fish Biol 63(6):1383–1401

    Article  Google Scholar 

  19. Tzeng WN, Chang CW, Wang CH, Shiao JC, Iizuka Y, Yang YJ, You CF, Ložys L (2007) Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Mar Ecol Prog Ser 348:285–295

    Article  CAS  Google Scholar 

  20. Mandair GS, Bateman TA, Morris MD. Raman spectroscopy of murine bone in response to simulated spaceflight conditions. In: Optics in bone biology and diagnostics, San Jose, CA, January 24 2009. Proceeding of SPIE, pp 716607. doi:10.1117/716612.810048

  21. Yeni YN, Yerramshetty J, Akkus O, Pechey C, Les CM (2006) Effect of fixation and embedding on Raman spectroscopic analysis of bone tissue. Calcif Tissue Int 78:363–371

    Article  CAS  Google Scholar 

  22. Hidalgo M, Tomas J, Høie H, Morales-Nin B, Ninnemann US (2008) Environmental influences on the recruitment process inferred from otolith stable isotopes in Merluccius merluccius off the Balearic Islands. Aquat Biol 3(3):195–207

    Article  Google Scholar 

  23. Jolivet A, de Pontual H, Hervy M, Paulet Y-M, Fablet R (2012) Preliminary observations of survival and growth of European hake in captivity. Aquacult Res 43:949–954

    Article  Google Scholar 

  24. Panfili J, de Pontual H, Troadec H, Wright PJ (2002) Manual of fish sclerochronology. Ifremer-IRD Coeditions, Brest

    Google Scholar 

  25. Campana SE (1983) Calcium deposition and otolith check formation during periods of stress in coho salmon, Oncorhynchus kisutch. Comp Biochem Physiol A Physiol 75(2):215–220

    Article  Google Scholar 

  26. Pisam M, Jammet C, Laurent D (2002) First steps of otolith formation of the zebrafish: role of glycogen? Cell Tissue Res 310(2):163–168

    Article  CAS  Google Scholar 

  27. Payan P, de Pontual H, Boeuf G, Mayer-Gostan N (2004) Endolymph chemistry and otolith growth in fish. C R Palevol 3(6–7):535–547

    Article  Google Scholar 

  28. Morales-Nin B (1987) Ultrastructure of the organic and inorganic constituents of the otoliths of the sea bass. In: Summerfeld RC, Hall GE (eds) The age and growth of fish. Iowa State University Press, Ames, pp 331–344

    Google Scholar 

  29. Dauphin Y, Dufour E (2008) Nanostructures of the aragonitic otolith of cod (Gadus morhua). Micron 39:891–896

    Article  Google Scholar 

  30. Hanson NN, Wurster CM, EIMF, Todd CD (2010) Comparison of secondary ion mass spectrometry and micromilling/continuous flow isotope ratio mass spectrometry techniques used to acquire intra-otolith δ18O values of wild Atlantic salmon (Salmo salar). Rapid Commun Mass Spectrom 24:2491–2498

    Article  CAS  Google Scholar 

  31. Zhang F, Cai W, Zhu J, Sun Z, Zhang J (2011) In situ Raman spectral mapping study on the microscale fibers in blue coral (Heliopora coerulea) skeletons. Anal Chem 83:7870–7875

    Article  CAS  Google Scholar 

  32. Mugiya Y, Uchimura T (1989) Otolith resorption induced by anaerobic stress in the goldfish, Carassius auratus. J Fish Biol 35(6):813–818

    Article  Google Scholar 

  33. Payan P, De Pontual H, Edeyer A, Borelli G, Boeuf G, Mayer-Gostan N (2004) Effects of stress on plasma homeostasis, endolymph chemistry, and check formation during otolith growth in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 61(7):1247–1255

    Article  CAS  Google Scholar 

  34. Høie H, Andersson C, Folkvord A, Karlsen O (2004) Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Mar Biol 2004:1039–1049

    Article  Google Scholar 

  35. Høie H, Folkvord A (2006) Estimating the timing of growth rings in Atlantic cod otoliths using stable oxygen isotopes. J Fish Biol 68(3):826–837

    Article  Google Scholar 

  36. Hufthammer AK, Høie H, Folkvord A, Geffen AJ, Andersson C, Ninnemann US (2010) Seasonality of human site occupation based on stable oxygen isotope ratios of cod otoliths. J Archaeol Sci 37(1):78–83

    Article  Google Scholar 

  37. Wurster CM, Patterson WP, Cheatham MM (1999) Advances in micromilling techniques: a new apparatus for acquiring high-resolution oxygen and carbon stable isotope values and major/minor elemental ratios from accretionary carbonate. Comput Geosci 25:1159–1166

    Article  CAS  Google Scholar 

  38. Foster LC, Andersson C, Høie H, Allison N, Finch AA, Johansen T (2008) Effects of micromilling on d18O in biogenic aragonite. G-cubed 9 (Q04013): doi:10.1029/2007GC001911

  39. Stewart REA, Campana SE, Jones CM, Stewart BE (2006) Bomb radiocarbon dating calibrates beluga (Delphinapterus leucas) age estimates. Can J Fish Aquat Sci 84:1840–1852

    Google Scholar 

  40. Miller MB, Clough AM, Batson JN, Vachet RW (2006) Transition metal binding to cod otolith proteins. J Exp Mar Biol Ecol 329:135–143

    Article  CAS  Google Scholar 

  41. Secor DH, Rooker JR, Zlokovitz E, Zdanowicz VS (2001) Identification of riverine, estuarine and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints. Mar Ecol Prog Ser 211:245–253

    Article  CAS  Google Scholar 

  42. Arai T, Hirata T (2006) Differences in the trace element deposition in otoliths between marine- and freshwater-resident japanese eels, Anguilla japonica, as determined by laser ablation ICPMS. Environ Biol Fish 75(2):173–182

    Article  Google Scholar 

  43. Careche M, Herrero AM, Rodriguez-Casado A, Del Mazo ML, Carmona P (1999) Structural changes of hake (Merluccius merluccius L.) fillets: effects of freezing and frozen storage. J Agric Food Chem 47(3):952–959

    Article  CAS  Google Scholar 

  44. Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S (2003) Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticus. Int J Biol Macromol 32(3–5):199–204

    Article  CAS  Google Scholar 

  45. Mary MB, Ramakrishnan V (2005) Infrared and laser Raman spectral studies of bis(DL-aspartic acid) sulfate. Spectrochim Acta A Mol Biomol Spectrosc 62(1–3):164–170

    Article  Google Scholar 

  46. Piot O, Autran J-C, Manfait M (2000) Spatial distribution of protein and phenolic constituents in wheat grain as probed by confocal Raman microspectroscopy. J Cereal Sci 32(1):57–71

    Article  CAS  Google Scholar 

  47. Karayannidou EG, Achilias DS, Sideridou ID (2006) Cure kinetics of epoxy–amine resins used in the restoration of works of art from glass or ceramic. Eur Polymer J 42(12):3311–3323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Jolivet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolivet, A., Fablet, R., Bardeau, JF. et al. Preparation techniques alter the mineral and organic fractions of fish otoliths: insights using Raman micro-spectrometry. Anal Bioanal Chem 405, 4787–4798 (2013). https://doi.org/10.1007/s00216-013-6893-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6893-2

Keywords

Navigation