Analytical and Bioanalytical Chemistry

, Volume 405, Issue 17, pp 5663–5670 | Cite as

Detection and quantification of proteins and cells by use of elemental mass spectrometry: progress and challenges



Much progress has been made in identification of the proteins in proteomes, and quantification of these proteins has attracted much interest. In addition to popular tandem mass spectrometric methods based on soft ionization, inductively coupled plasma mass spectrometry (ICPMS), a typical example of mass spectrometry based on hard ionization, usually used for analysis of elements, has unique advantages in absolute quantification of proteins by determination of an element with a definite stoichiometry in a protein or attached to the protein. In this Trends article, we briefly describe state-of-the-art ICPMS-based methods for quantification of proteins, emphasizing protein-labeling and element-tagging strategies developed on the basis of chemically selective reactions and/or biospecific interactions. Recent progress from protein to cell quantification by use of ICPMS is also discussed, and the possibilities and challenges of ICPMS-based protein quantification for universal, selective, or targeted quantification of proteins and cells in a biological sample are also discussed critically. We believe ICPMS-based protein quantification will become ever more important in targeted quantitative proteomics and bioanalysis in the near future.

Online Abstract Figure

ICPMS-based protein and cell quantification


ICPMS Protein quantification Cell quantification 


  1. 1.
    Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324:163–166CrossRefGoogle Scholar
  2. 2.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefGoogle Scholar
  3. 3.
    Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806CrossRefGoogle Scholar
  4. 4.
    Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, Yan P, Schoenherr RM, Zhao L, Voytovich UJ, Kelly-Spratt KS, Krasnoselsky A, Gafken PR, Hogan JM, Jones LA, Wang P, Amon L, Chodosh LA, Nelson PS, McIntosh MW, Kemp CJ, Paulovich AG (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29:625–634CrossRefGoogle Scholar
  5. 5.
    Pereira Navaza A, Ruiz Encinar J, Sanz-Medel A (2007) Absolute and accurate quantification of protein phosphorylation by using an elemental phosphorus standard and element mass spectrometry. Angew Chem Int Ed 46:569–571CrossRefGoogle Scholar
  6. 6.
    Sanz-Medel A, Montes-Bayón M, del Rosario Fernández de la Campa M, Encinar JR, Bettmer J (2008) Elemental mass spectrometry for quantitative proteomics. Anal Bioanal Chem 390:3–16CrossRefGoogle Scholar
  7. 7.
    Prange A, Pröfrock D (2008) Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J Anal At Spectrom 23:432–459CrossRefGoogle Scholar
  8. 8.
    Becker JS, Jakubowski N (2009) The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences. Chem Soc Rev 38:1969–1983CrossRefGoogle Scholar
  9. 9.
    Bettmer J (2010) Application of isotope dilution ICP–MS techniques to quantitative proteomics. Anal Bioanal Chem 397:3495–3502CrossRefGoogle Scholar
  10. 10.
    Wang M, Feng WY, Hao YL, Chai ZF (2010) ICP-MS-based strategies for protein quantification. Mass Spectrom Rev 29:326–348CrossRefGoogle Scholar
  11. 11.
    Sanz-Medel A, Montes-Bayón M, Bettmer J, Fernández-Sanchez ML, Encinar JR (2012) ICP-MS for absolute quantification of proteins for heteroatom-tagged, targeted proteomics. Trac-Trends Anal Chem 40:52–63CrossRefGoogle Scholar
  12. 12.
    Wind M, Wegener A, Eisenmenger A, Kellner R, Lehmann WD (2003) Sulfur as the key element for quantitative protein analysis by capillary liquid chromatography coupled to element mass spectrometry. Angew Chem Int Ed 42:3425–3427CrossRefGoogle Scholar
  13. 13.
    Schaumlöffel D, Giusti P, Preud’Homme H, Szpunar J, Łobiński R (2007) Precolumn isotope dilution analysis in nanoHPLC-ICPMS for absolute quantification of sulfur-containing peptides. Anal Chem 79:2859–2868CrossRefGoogle Scholar
  14. 14.
    Wang M, Feng W, Lu W, Li B, Wang B, Zhu M, Wang Y, Yuan H, Zhao Y, Chai Z (2007) Quantitative analysis of proteins via sulfur determination by HPLC coupled to isotope dilution ICPMS with a hexapole collision cell. Anal Chem 79:9128–9134CrossRefGoogle Scholar
  15. 15.
    Fernández SD, Sugishama N, Encinar JR, Sanz-Medel A (2012) Triple quad ICPMS (ICPQQQ) as a new tool for absolute quantitative proteomics and phosphoproteomics. Anal Chem 84:5851–5857CrossRefGoogle Scholar
  16. 16.
    Balcaen L, Woods G, Resanoc M, Vanhaecke F (2013) Accurate determination of S in organic matrices using isotope dilution ICP-MS/MS. J Anal At Spectrom 28:33–39CrossRefGoogle Scholar
  17. 17.
    Guo YF, Chen LQ, Yang LM, Wang QQ (2008) Counting sulfhydryls and disulfide bonds in peptides and proteins using mercurial ions as an MS-tag. J Am Soc Mass Spectrom 19:1108–1113CrossRefGoogle Scholar
  18. 18.
    Kutscher DJ, del Castillo Busto ME, Zinn N, Sanz-Medel A, Bettmer J (2008) Protein labelling with mercury tags: fundamental studies on ovalbumin derivatised with p-hydroxymercuribenzoic acid (pHMB). J Anal At Spectrom 23:1359–1364CrossRefGoogle Scholar
  19. 19.
    Guo Y, Xu M, Yang L, Wang Q (2009) Strategy for absolute quantification of proteins: CH3Hg+ labeling integrated molecular and elemental mass spectrometry. J Anal At Spectrom 24:1184–1187CrossRefGoogle Scholar
  20. 20.
    Xu M, Yan XW, Xie QQ, Yang L, Wang Q (2010) Dynamic labeling strategy with 204Hg-isotopic methylmercurithiosalicylate for absolute peptide and protein quantification. Anal Chem 82:1616–1620CrossRefGoogle Scholar
  21. 21.
    Ahrends R, Pieper S, Kühn A, Weisshoff H, Hamester M, Lindemann T, Scheler C, Lehmann K, Taubner K, Linscheid MW (2007) A metal-coded affinity tag approach to quantitative proteomics. Mol Cell Proteomics 6:1907–1916CrossRefGoogle Scholar
  22. 22.
    Yan XW, Xu M, Yang LM, Wang QQ (2010) Absolute quantification of intact proteins via 1,4,7,10- tetraazacyclododecane-1,4,7-trisacetic acid-10-maleimidoethylacetamide-europium labeling and HPLC coupled with species-unspecific isotope dilution ICPMS. Anal Chem 82:1261–1269CrossRefGoogle Scholar
  23. 23.
    Zhang ZB, Yan XW, Xu M, Yang LM, Wang QQ (2011) A dual-labelling strategy for integrated ICPMS and LIF for the determination of peptides. J Anal At Spectrom 23:1175–1177CrossRefGoogle Scholar
  24. 24.
    Esteban-Fernández D, Scheler C, Linscheid MW (2011) Absolute protein quantification by LC-ICP-MS using MeCAT peptide labeling. Anal Bioanal Chem 401:657–666CrossRefGoogle Scholar
  25. 25.
    Bergmann U, Ahrends R, Neumann B, Scheler C, Linscheid MW (2012) Application of metal-coded affinity tags (MeCAT): absolute protein quantification with top-down and bottom-up workflows by metal-coded tagging. Anal Chem 84:5268–5275CrossRefGoogle Scholar
  26. 26.
    Xu M, Yang L, Wang Q (2008) Quantification of selenium-tagged proteins in human plasma using species-unspecific isotope dilution ICP-DRC-qMS coupled on-line with anion exchange chromatography. J Anal At Spectrom 23:1545–1549CrossRefGoogle Scholar
  27. 27.
    Lobinski R, Schaumlöffel D, Szpunar J (2006) Mass spectrometry in bioinorganic analytical chemistry. Mass Spectrom Rev 25:255–289CrossRefGoogle Scholar
  28. 28.
    Mounicou S, Lobinski R, Szpunar J (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138CrossRefGoogle Scholar
  29. 29.
    Bierla K, Szpunar J, Yiannikouris A, Lobinski R (2012) Comprehensive speciation of selenium in selenium-rich yeast. Trac-Trends Anal Chem 41:122–132CrossRefGoogle Scholar
  30. 30.
    Jakubowski N, Messerschmidt J, Aňorbe MG, Waentig L, Hayen H, Roos PH (2008) Labelling of proteins by use of iodination and detection by ICP-MS. J Anal At Spectrom 23:1487–1496CrossRefGoogle Scholar
  31. 31.
    Rappel C, Schaumlöffel D (2009) Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis. Anal Chem 81:385–393CrossRefGoogle Scholar
  32. 32.
    Navaza AP, Encinar JR, Ballesteros A, Gonz Iez JM, Sanz-Medel A (2009) Capillary HPLC-ICPMS and tyrosine iodination for the absolute quantification of peptides using generic standards. Anal Chem 81:5390–5399CrossRefGoogle Scholar
  33. 33.
    Xu M, Yan XW, Yang LM, Wang QQ (2011) Chemical labeling strategies for recognition and determination of protein and peptide. SCIENTIA SINICA Chimica 41:663–677CrossRefGoogle Scholar
  34. 34.
    Marx V (2013) Targeted proteomics. Nat Methods 10:19–22CrossRefGoogle Scholar
  35. 35.
    Yan XW, Luo YC, Zhang ZB, Li ZX, Luo Q, Yang LM, Zhang B, Chen HF, Bai PM, Wang QQ (2012) Europium-labeled activity-based probe through click chemistry: absolute serine protease quantification using 153Eu isotope dilution ICP/MS. Angew Chem Int Ed 51:3358–3363CrossRefGoogle Scholar
  36. 36.
    Zhang C, Wu F, Zhang Y, Wang X, Zhang X (2001) A novel combination of immunoreaction and ICP-MS as a hyphenated technique for the determination of thyroid-stimulating hormone (TSH) in human serum. J Anal At Spectrom 16:1393–1396CrossRefGoogle Scholar
  37. 37.
    Zhang C, Zhang Z, Yu B, Shi J, Zhang X (2002) Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Anal Chem 74:96–9938CrossRefGoogle Scholar
  38. 38.
    Baranov VI, Quinn Z, Bandura DR, Tanner SD (2002) A sensitive and quantitative element-tagged immunoassay with ICPMS detection. Anal Chem 74:1629–1636CrossRefGoogle Scholar
  39. 39.
    Careri M, Elviri L, Mangia A (2009) Element-tagged immunoassay with inductively coupled plasma mass spectrometry for multianalyte detection. Anal Bioanal Chem 393:57–61CrossRefGoogle Scholar
  40. 40.
    Chen B, Peng H, Zheng F, Hu B, He M, Zhao W, Pang D (2010) Immunoaffinity monolithic capillary microextraction coupled with ICP-MS for immunoassay with quantum dot labels. J Anal At Spectrom 25:1674–1681CrossRefGoogle Scholar
  41. 41.
    Liu R, Liu X, Tang YR, Wu L, Hou XD, Lv Y (2011) Highly sensitive immunoassay based on immunogold-silver amplification and inductively coupled plasma mass spectrometric detection. Anal Chem 83:2330–2336CrossRefGoogle Scholar
  42. 42.
    Hu S, Zhang S, Hu Z, Xing Z, Zhang X (2007) Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno- microarray with element-tagged antibodies. Anal Chem 79:923–929CrossRefGoogle Scholar
  43. 43.
    Lou X, Zhang G, Herrera I, Kinach R, Ornatsky O, Baranov V, Nitz M, Winnik MA (2007) Polymer-based elemental tags for sensitive bioassays. Angew Chem Int Ed 46:6111–6114CrossRefGoogle Scholar
  44. 44.
    Lathia US, Ornatsky O, Baranov V, Nitz M (2010) Development of inductively coupled plasma–mass spectrometry-based protease assays. Anal Biochem 398:93–98CrossRefGoogle Scholar
  45. 45.
    Lathia US, Ornatsky O, Baranov V, Nitz M (2011) Multiplexed protease assays using element-tagged substrates. Anal Biochem 408:157–159CrossRefGoogle Scholar
  46. 46.
    Yan XW, Yang LM, Wang QQ (2011) Lanthanide-coded protease-specific peptide-nanoparticle probes for a label-free multiplex protease assay using element mass spectrometry: a proof-of-concept study. Angew Chem Int Ed 50:5130–5133CrossRefGoogle Scholar
  47. 47.
    Han GJ, Zhang SC, Zhi X, Zhang XR (2013) Absolute and relative quantification of multiplex DNA assays based on an elemental labeling strategy. Angew Chem Int Ed 52:1466–1471CrossRefGoogle Scholar
  48. 48.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  49. 49.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  50. 50.
    Zhao Q, Lu XF, Yuan CG, Li XF, Le XC (2009) Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection. Anal Chem 81:7484–7489CrossRefGoogle Scholar
  51. 51.
    Liu JM, Yan XP (2011) Ultrasensitive, selective and simultaneous detection of cytochrome c and insulin based on immunoassay and aptamer-based bioassay in combination with Au/Ag nanoparticle tagging and ICP-MS detection. J Anal At Spectrom 26:1191–1197CrossRefGoogle Scholar
  52. 52.
    Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004CrossRefGoogle Scholar
  53. 53.
    Li F, Zhao Q, Wang C, Lu XF, Li XF, Le XC (2010) Detection of Escherichia coli O157:H7 using gold nanoparticle labeling and inductively coupled plasma mass spectrometry. Anal Chem 82:3399–3403CrossRefGoogle Scholar
  54. 54.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822CrossRefGoogle Scholar
  55. 55.
    Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696CrossRefGoogle Scholar
  56. 56.
    Zhang ZB, Luo Q, Yan XW, Li ZX, Luo YC, Yang LM, Zhang B, Chen HF, Wang QQ (2012) Integrin-targeted trifunctional probe for cancer cells: a “seeing and counting” approach. Anal Chem 84:8946–8951Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry and the Key Laboratory of Analytical Science, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina

Personalised recommendations