Analytical and Bioanalytical Chemistry

, Volume 405, Issue 15, pp 5005–5011 | Cite as

Metabolomics for unknown plant metabolites

  • Ryo Nakabayashi
  • Kazuki SaitoEmail author


In this article we discuss current trends in the techniques available for plant metabolomics. Chemical assignment of unknown metabolites leads to understanding of biosynthetic mechanisms at the gene level for genome-sequenced plants. Metabolomics using mass spectrometry has achieved innovative results in phytochemical genomics for primary and secondary metabolism in the model plant Arabidopsis thaliana by using publicly and commercially available information and standard compounds. However, finding a consolidated analytical technique for elucidation of structural information (e.g., elemental composition and structure) remains challenging. Recently, hyphenated analytical techniques and computer-assisted structural analysis with high-throughput and high-accuracy have been developing. Metabolite-driven approaches using such technology will be of central importance in phytochemical genomics.


Metabolomics Unknown secondary metabolites LC–MS LC–SPE–NMR–MS Computer-assisted structure elucidation 



We would like to thank Dr Kazunori Saito, Dr Ulrich Braumann, and Dr Aiko Barsch (Bruker Daltonics) for the pictures of FT–ICR–MS and LC–SPE–NMR–MS. We also thank Ms Yumiko Iizuka for the illustrations. This study was supported by JST, Strategic International Research Cooperative Program (SICP), JST, Strategic International Collaborative Research Program (SICORP), and Japan Advanced Plant Science Network. Finally, we extend our apologies to authors whose work has not been cited because of the limited space available.


  1. 1.
    Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846CrossRefGoogle Scholar
  2. 2.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335CrossRefGoogle Scholar
  3. 3.
    Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources for new pesticides. J Nat Prod 75:1231–1242CrossRefGoogle Scholar
  4. 4.
    Saito K, Matsuda F (2010) Metabolomics for Functional Genomics, Systems Biology, and Biotechnology. Annu Rev Plant Biol 61:463–489CrossRefGoogle Scholar
  5. 5.
    Higashi Y, Saito K (2013) Network analysis for gene discovery in plant specialized metabolism. Plant Cell Environ. doi: 10.1111/pce.12069
  6. 6.
    Okazaki Y, Otsuki H, Narisawa T, Kobayashi M, Sawai S, Kamide Y, Kusano M, Aoki T, Hirai MY, Saito K (2013) A new class of plant lipid is essential for protection against phosphorus depletion. Nat Commun 4:1510Google Scholar
  7. 7.
    Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48CrossRefGoogle Scholar
  8. 8.
    Seki H, Sawai S, Ohyama K, Mizutani M, Ohnishi T, Sudo H, Fukushima EO, Akashi T, Aoki T, Saito K, Muranaka T (2011) Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell 23:4112–4123CrossRefGoogle Scholar
  9. 9.
    Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep 6:1–15CrossRefGoogle Scholar
  10. 10.
    Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30:826–828CrossRefGoogle Scholar
  11. 11.
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714CrossRefGoogle Scholar
  12. 12.
    Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M, Sakata A, Akiyama K, Sakurai T, Matsuda F, Aoki T, Hirai MY, Saito K (2012) RIKEN tandem mass spectral database (ReSpect) for phytochemicals: A plant-specific MS/MS-based data resource and database. Phytochemistry 82:38–45CrossRefGoogle Scholar
  13. 13.
    Tohge T, Fernie AR (2009) Web-based resources for mass-spectrometry-based metabolomics: a user's guide. Phytochemistry 70:450–456CrossRefGoogle Scholar
  14. 14.
    Neumann S, Bocker S (2010) Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Anal Bioanal Chem 398:2779–2788CrossRefGoogle Scholar
  15. 15.
    Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26:1466–1487CrossRefGoogle Scholar
  16. 16.
    Han J, Danell RM, Patel JR, Gumerov DR, Scarlett CO, Speir JP, Parker CE, Rusyn I, Zeisel S, Borchers CH (2008) Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics 4:128–140CrossRefGoogle Scholar
  17. 17.
    Ohta D, Kanaya S, Suzuki H (2010) Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Curr Opin Biotechnol 21:35–44CrossRefGoogle Scholar
  18. 18.
    Miura D, Tsuji Y, Takahashi K, Wariishi H, Saito K (2010) A strategy for the determination of the elemental composition by Fourier transform ion cyclotron resonance mass spectrometry based on isotopic peak ratios. Anal Chem 82:5887–5891CrossRefGoogle Scholar
  19. 19.
    Kind T, Fiehn O (2010) Advances in structure elucidation of small molecules using mass spectrometry. Bioanal Rev 2:23–60CrossRefGoogle Scholar
  20. 20.
    Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten HM, Hesse H, Segu S, Hummel J, Kohl K, Willmitzer L (2011) Elemental formula annotation of polar and lipophilic metabolites using C-13, N-15 and S-34 isotope labelling, in combination with high- resolution mass spectrometry. Plant J 68:364–376CrossRefGoogle Scholar
  21. 21.
    Nakabayashi R, Sawada Y, Yamada Y, Suzuki M, Hirai MY, Sakurai T, Saito K (2013) Combination of liquid chromatography–fourier transform ion cyclotron resonance–mass spectrometry with (13)c-labeling for chemical assignment of sulfur-containing metabolites in onion bulbs. Anal Chem 85:1310–1315CrossRefGoogle Scholar
  22. 22.
    Sturm S, Seger C (2012) Liquid chromatography–nuclear magnetic resonance coupling as alternative to liquid chromatography–mass spectrometry hyphenations: Curious option or powerful and complementary routine tool? J Chromatogr A. doi: 10.1016/j.chroma.2012.05.032
  23. 23.
    Iwasa K, Cui WH, Sugiura M, Takeuchi A, Moriyasu M, Takeda K (2005) Structural analyses of metabolites of phenolic 1-benzyltetrahydroisoquinolines in plant cell cultures by LC/NMR, LC/MS, and LC/CD. J Nat Prod 68:992–1000CrossRefGoogle Scholar
  24. 24.
    Tokunaga T, Okamoto M, Tanaka K, Tode C, Sugiura M (2010) Chiral Liquid Chromatography–Circular Dichroism–NMR for Estimating Separation Conditions of Chiral HPLC without Authentic Samples. Anal Chem 82:4293–4297CrossRefGoogle Scholar
  25. 25.
    Pukalskas A, van Beek TA, de Waard P (2005) Development of a triple hyphenated HPLC-radical scavenging detection–DAD–SPE–NMR system for the rapid identification of antioxidants in complex plant extracts. J Chromatogr A 1074:81–88CrossRefGoogle Scholar
  26. 26.
    Hendrawati O, Woerdenbag HJ, Michiels PJ, Aantjes HG, van Dam A, Kayser O (2011) Identification of lignans and related compounds in Anthriscus sylvestris by LC–ESI–MS/MS and LC–SPE–NMR. Phytochemistry 72:2172–2179CrossRefGoogle Scholar
  27. 27.
    Staerk D, Kesting JR, Sairafianpour M, Witt M, Asili J, Emami SA, Jaroszewski JW (2009) Accelerated dereplication of crude extracts using HPLC–PDA–MS–SPE–NMR: Quinolinone alkaloids of Haplophyllum acutifolium. Phytochemistry 70:1055–1061CrossRefGoogle Scholar
  28. 28.
    Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK Family Databases: Integrated Metabolite-Plant Species Databases for Multifaceted Plant Research. Plant Cell Physiol 53:e1Google Scholar
  29. 29.
    Sakurai T, Yamada Y, Sawada Y, Matsuda F, Akiyama K, Shinozaki K, Hirai MY, Saito K (2013) PRIMe Update: Innovative Content for Plant Metabolomics and Integration of Gene Expression and Metabolite Accumulation. Plant Cell Physiol 54:e5Google Scholar
  30. 30.
    Matsuda F, Nakabayashi R, Sawada Y, Suzuki M, Hirai MY, Kanaya S, Saito K (2011) Mass spectra-based framework for automated structural elucidation of metabolome data to explore phytochemical diversity. Front Plant Sci 2:40CrossRefGoogle Scholar
  31. 31.
    Wolf S, Schmidt S, Muller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinforma 11:148CrossRefGoogle Scholar
  32. 32.
    Steinbeck C (2004) Recent developments in automated structure elucidation of natural products. Nat Prod Rep 21:512–518CrossRefGoogle Scholar
  33. 33.
    Elyashberg ME, Williams A, Martin GE (2008) Computer-assisted structure verification and elucidation tools in NMR-based structure elucidation. Prog Nucl Magn Reson Spectrosc 53:1–104CrossRefGoogle Scholar
  34. 34.
    Elyashberg ME, Blinov KA, Williams AJ, Molodtsov SG, Martin GE (2006) Are deterministic expert systems for computer-assisted structure elucidation obsolete? J Chem Inf Model 46:1643–1656CrossRefGoogle Scholar
  35. 35.
    Moser A, Elyashberg ME, Williams AJ, Blinov KA, DiMartino JC (2012) Blind trials of computer-assisted structure elucidation software. J Cheminform 4:5CrossRefGoogle Scholar
  36. 36.
    Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301:1377–1380CrossRefGoogle Scholar
  37. 37.
    Junker J (2011) Theoretical NMR correlations based Structure Discussion. J Cheminform 3:27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.RIKEN Center for Sustainable Resource ScienceYokohamaJapan
  2. 2.Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan

Personalised recommendations