Hybridization detection of enzyme-labeled DNA at electrically heated electrodes

Abstract

In this report we describe an electrochemical DNA hybridization sensor approach, in which signal amplification is achieved using heated electrodes together with an enzyme as DNA-label. On the surface of the heatable low temperature co-fired ceramic (LTCC) gold electrode, an immobilized thiolated capture probe was hybridized with a biotinylated target using alkaline phosphatase (SA-ALP) as reporter molecule. The enzyme label converted the redox-inactive substrate 1-naphthyl phosphate (NAP) into the redox-active 1-naphthol voltammetrically determined at the modified gold LTCC electrode. During the measurement only the electrode was heated leaving the bulk solution at ambient temperature. Elevated temperature during detection led to increased enzyme activity and enhanced analytical signals for DNA hybridization detection. The limit of detection at 53 °C electrode temperature was 1.2 nmol/L.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2

References

  1. 1.

    Sadik OA, Aluoch AO, Zhou AL (2009) Biosens Bioelectron 24:2749–2765

    Article  CAS  Google Scholar 

  2. 2.

    Hvastkovs EG, Buttry DA (2010) Analyst 135:1817–1829

    Article  CAS  Google Scholar 

  3. 3.

    Tosar JP, Branas G, Laiz J (2010) Biosens Bioelectron 26:1205–1217

    Article  CAS  Google Scholar 

  4. 4.

    Palecek E, Bartosik M (2012) Chem Rev 112:3427–3481

    Article  CAS  Google Scholar 

  5. 5.

    Laschi S, Palchetti I, Marrazza G, Mascini M (2009) Bioelectrochem 76:214–220

    Article  CAS  Google Scholar 

  6. 6.

    Silvestrini M, Fruk L, Ugo P (2013) Biosens Bioelectron 40:265–270

    Article  CAS  Google Scholar 

  7. 7.

    Caruana DJ, Heller A (1999) J Am Chem Soc 121:769–774

    Article  CAS  Google Scholar 

  8. 8.

    Zhang Y, Kim HH, Heller A (2003) Anal Chem 75:3267–3269

    Article  CAS  Google Scholar 

  9. 9.

    Albers J, Grunwald T, Nebling E, Piechotta G, Hintsche R (2003) Anal Bioanal Chem 377:521–527

    Article  CAS  Google Scholar 

  10. 10.

    Zhou Y, Chiu CW, Liang H (2012) Sensors 12:15036–15062

    Article  CAS  Google Scholar 

  11. 11.

    Mandler D, Kraus-Ophir D (2011) J Solid State Electrochem 15:1535–1558

    Article  CAS  Google Scholar 

  12. 12.

    Carpini G, Lucarelli F, Marrazza G, Mascini M (2004) Biosens Bioelectron 20:167–175

    Article  CAS  Google Scholar 

  13. 13.

    Patolsky F, Lichtenstein A, Willner I (2001) Nature 19:253–257

    Article  CAS  Google Scholar 

  14. 14.

    Lucarelli F, Marrazza G, Mascini M (2006) Langmuir 22:4305–4309

    Article  CAS  Google Scholar 

  15. 15.

    de Lumley-Woodyear T, Caruana DJ, Campbell CN, Heller A (1999) Anal Chem 71:394–398

    Article  Google Scholar 

  16. 16.

    Meunier-Prest R, Raveau S, Finot E, Legacy G, Cherkaoui-Malki M, Latruffe N (2003) Nucleic Acids Res 31:e150

    Article  Google Scholar 

  17. 17.

    Centi S, Laschi S, Mascini M (2007) Talanta 73:394–399

    Article  CAS  Google Scholar 

  18. 18.

    Miranda-Castro R, Lobo-Castañón J, Miranda-Ordieres AJ, Tuñón-Blanco P (2010) Electroanalysis 22:1297–1305

    Article  CAS  Google Scholar 

  19. 19.

    Miranda-Castro R, De-los Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2009) Biosens Bioelectron 24:2390–2396

    Article  CAS  Google Scholar 

  20. 20.

    Preechaworapun A, Dai Z, Xiang Y, Chailapakul O, Wang J (2008) Talanta 76:424–431

    Article  CAS  Google Scholar 

  21. 21.

    Silva E, Mascini M, Centi S, Turner APF (2007) Anal Lett 40:1371–1385

    Article  CAS  Google Scholar 

  22. 22.

    Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Biosens Bioelectron 22:1544–1549

    Article  CAS  Google Scholar 

  23. 23.

    Lau C, Reiter S, Schuhmann W, Gründler P (2004) Anal Bioanal Chem 379:255–260

    Article  CAS  Google Scholar 

  24. 24.

    Lau C, Borgmann S, Maciejewska M, Ngounou B, Gründler P, Schuhmann W (2007) Biosens Bioelectron 22:3014–3020

    Article  CAS  Google Scholar 

  25. 25.

    Tseng TF, Yang JL, Chuang MC, Lou SL, Galik M, Flechsig GU, Wang J (2009) Electrochem Commun 11:1819–1822

    Article  CAS  Google Scholar 

  26. 26.

    Flechsig GU, Peter J, Hartwich G, Wang J, Gründler P (2005) Langmuir 21:7848–7853

    Article  CAS  Google Scholar 

  27. 27.

    Peter J, Reske T, Flechsig GU (2007) Electroanalysis 19:1356–1361

    Article  CAS  Google Scholar 

  28. 28.

    Wachholz F, Gimsa J, Duwensee H, Grabow H, Gründler P, Flechsig GU (2007) Electroanalysis 19:535–540

    Article  CAS  Google Scholar 

  29. 29.

    Wang J, Jasinski M, Flechsig GU, Gründler P, Tian B (2000) Talanta 50:1205–1210

    Article  CAS  Google Scholar 

  30. 30.

    Wachholz F, Biała K, Piekarz M, Flechsig GU (2007) Electrochem Commun 9:2346–2352

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG FL 384/4-1, FL 384/4-2 and FL 384/7-1 Heisenberg Fellowship) and the Interdisciplinary Faculty of the University of Rostock for financial support.

Supporting Information

Supporting information is available online: Fig. S1 illustrating the calculation of the LODs from the calibration data for both 21 and 53 °C measurement temperature.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerd-Uwe Flechsig.

Additional information

Published in the topical collection Bioelectroanalysis with guest editors Nicolas Plumeré, Magdalena Gebala, and Wolfgang Schuhmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 149 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walter, A., Surkus, A. & Flechsig, G. Hybridization detection of enzyme-labeled DNA at electrically heated electrodes. Anal Bioanal Chem 405, 3907–3911 (2013). https://doi.org/10.1007/s00216-013-6815-3

Download citation

Keywords

  • DNA hybridization
  • Heated biosensor
  • Enzyme label
  • Electrochemical detection
  • Alkaline phosphatase