The determination of nonylphenol and its precursors in a trickling filter wastewater treatment process

Abstract

An ultra performance liquid chromatography method coupled to a triple quadrupole mass spectrometer was developed to determine nonylphenol and 15 of its possible precursors (nonylphenol ethoxylates and nonylphenol carboxylates) in aqueous and particulate wastewater matrices. Final effluent method detection limits for all compounds ranged from 1.4 to 17.4 ng l−1 in aqueous phases and from 1.4 to 39.4 ng g−1 in particulate phases of samples. The method was used to measure the performance of a trickling filter wastewater treatment works, which are not routinely monitored despite their extensive usage. Relatively good removals of nonylphenol were observed over the biological secondary treatment process, accounting for a 53 % reduction. However, only an 8 % reduction in total nonylphenolic compound load was observed. This was explained by a shortening in ethoxylate chain length which initiated production of shorter polyethoxylates ranging from 1 to 4 ethoxylate units in length in final effluents. Modelling the possible impact of trickling filter discharge demonstrated that the nonylphenol environmental quality standard may be exceeded in receiving waters with low dilution ratios. In addition, there is a possibility that the EQS can be exceeded several kilometres downstream of the mixing zone due to the biotransformation of readily degradable short-chained precursors. This accentuates the need to monitor ‘non-priority’ parent compounds in wastewater treatment works since monitoring nonylphenol alone can give a false indication of process performance. It is thus recommended that future process performance monitoring and optimisation is undertaken using the full suite of nonylphenolic moieties which this method can facilitate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Christiansen T, Korsgaard B, Jespersen Å (1998) J Exp Biol 201:179–192

    CAS  Google Scholar 

  2. 2.

    Lye CM, Frid CLJ, Gill ME, Cooper DW, Jones DM (1999) Environ Sci Technol 33:1009–1014

    Article  CAS  Google Scholar 

  3. 3.

    Directive 2000/60/EC (2000) European Parliament and the Council of the European Union; Luxembourg

  4. 4.

    Directive 2003/53/EC (2003) European Parliament and the Council of the European Union; Luxembourg

  5. 5.

    Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Environ Int 34:1033–1049

    Article  CAS  Google Scholar 

  6. 6.

    Lara-Martín PA, González-Mazo E, Brownawell BJ (2012) Anal Bioanal Chem 402:2359–2368

    Article  Google Scholar 

  7. 7.

    Stanford BD, Weinberg HS (2010) Environ Sci Technol 44:2994–3001

    Article  CAS  Google Scholar 

  8. 8.

    McAdam EJ, Bagnall JP, Soares A, Koh YKK, Chiu TY, Scrimshaw MD, Lester JN, Cartmell E (2011) Environ Sci Technol 45:248–254

    Article  CAS  Google Scholar 

  9. 9.

    Barber LB, Vajda AM, Douville C, Norris DO, Writer JH (2012) Environ Sci Technol 46:2121–2131

    Article  CAS  Google Scholar 

  10. 10.

    Giger W, Brunner PH, Schaffner C (1984) Science 225:623–625

    Article  CAS  Google Scholar 

  11. 11.

    White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Endocrinology 135:175–182

    Article  CAS  Google Scholar 

  12. 12.

    Bedding ND, McIntyre AE, Perry R, Lester JN (1982) Sci Total Environ 25:143–167

    Article  CAS  Google Scholar 

  13. 13.

    Langford KH, Scrimshaw MD, Birkett JW, Lester JN (2005) Chemosphere 61:1221–1230

    Article  CAS  Google Scholar 

  14. 14.

    Huo CX, Hickey P (2007) Environ Technol 28:731–741

    Article  CAS  Google Scholar 

  15. 15.

    UKWIR (2009) Endocrine disrupting chemicals national demonstration programme: assessment of the performance of WwTW in removing oestrogenic substances (09/TX/04/16)

  16. 16.

    Tilley DF (2011) Aerobic wastewater treatment processes: history and development. IWA Publishing, London

    Google Scholar 

  17. 17.

    Gomez E, Wang X, Dagnino S, Leclercq M, Escande A, Casellas C, Picot B, Fenet H (2007) Water Sci Technol 55:157–163

    CAS  Google Scholar 

  18. 18.

    Ghanem A, Bados P, Estaun AR, de Alencastro LF, Taibi S, Einhorn J, Mougin C (2007) Chemosphere 69:1368–1373

    Article  CAS  Google Scholar 

  19. 19.

    Chang BV, Yu CH, Yuan SY (2004) Chemosphere 55:493–500

    Article  CAS  Google Scholar 

  20. 20.

    Moreira M, Aquino S, Coutrim M, Silva J, Afonso R (2011) Environ Technol 32:1409–1417

    Article  CAS  Google Scholar 

  21. 21.

    Langdon KA, Warne MSJ, Smernik RJ, Shareef A, Kookana RS (2011) Chemosphere 84:1556–1562

    Article  CAS  Google Scholar 

  22. 22.

    Buisson RSK, Kirk PWW, Lester JN (1984) J Chromatogr Sci 22:339–342

    CAS  Google Scholar 

  23. 23.

    Robertson AM, Lester JN (1994) Environ Sci Technol 28:346–351

    Article  CAS  Google Scholar 

  24. 24.

    Gomes RL, Avcioglu E, Scrimshaw MD, Lester JN (2004) Tr Anal Chem 23:737–744

    Article  CAS  Google Scholar 

  25. 25.

    Ifelebuegu AO (2011) Int J Environ Sci Technol 8:245–254

    CAS  Google Scholar 

  26. 26.

    Leusch FDL, Chapman HF, van den Heuvel MR, Tan BLL, Gooneratne SR, Tremblay LA (2006) Ecotoxicol Environ Saf 65:403–411

    Article  CAS  Google Scholar 

  27. 27.

    Kouloumbos VN, Schäffer A, Corvini PF (2008) Water Res 42:3941–3951

    Article  CAS  Google Scholar 

  28. 28.

    Yuan SY, Yu CH, Chang BV (2004) Environ Poll 127:425–430

    Article  CAS  Google Scholar 

  29. 29.

    Sarmah AK, Northcott GL (2008) Environ Toxicol Chem 27:819–827

    Article  CAS  Google Scholar 

  30. 30.

    Tao X, Tang C, Wu P, Han Z, Zhang C, Zhang Y (2011) J Environ Monit 13:3269–3276

    Article  CAS  Google Scholar 

  31. 31.

    Brown S, Devin-Clarke D, Doubrava M, O’Connor G (2009) Chemosphere 75:549–554

    Article  CAS  Google Scholar 

  32. 32.

    Koh YKK, Chiu TY, Boobis AR, Cartmell E, Pollard SJT, Scrimshaw MD, Lester JN (2008) Chemosphere 73:551–556

    Article  CAS  Google Scholar 

  33. 33.

    Jahnke A, Gandrass J, Ruck W (2004) J Chromatogr A 1035:115–122

    Article  CAS  Google Scholar 

  34. 34.

    Loos R, Hanke G, Umlauf G, Eisenreich SJ (2007) Chemosphere 66:690–699

    Article  CAS  Google Scholar 

  35. 35.

    Vieno NM, Tuhkanen T, Kronberg L (2006) J Chromatogr A 1134:101–111

    Article  CAS  Google Scholar 

  36. 36.

    Petrie B, McAdam EJ, Richards KH, Lester JN, Cartmell E (2012) Int J Environ Anal Chem. doi:10.1080/03067319.2012.717272

  37. 37.

    Whelan MJ, Gandolfi C, Bischetti GB (1999) Water Res 33:3171–3181

    Article  CAS  Google Scholar 

  38. 38.

    Howard P, Meylan W, Aronson D, Stiteler W, Tunkel J, Comber M, Parkerton TF (2005) Environ Toxicol Chem 24:1847–1860

    Article  CAS  Google Scholar 

  39. 39.

    EPI Suite. http://www.epa.gov/oppt/exposure/pubs/episuite.htm Accessed 21 Sept 2012.

  40. 40.

    OECD (1992) Test No. 301: Ready Biodegradability, OECD Guidelines for the Testing of Chemicals. OECD Publishing.

  41. 41.

    Gandolfi C, Facchi A, Whelan MJ (2001) Water Resour Res 37:2365–2375

    Article  Google Scholar 

  42. 42.

    Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, New Jersey

    Google Scholar 

  43. 43.

    Fox K, Holt M, Daniel M, Buckland H, Guymer I (2000) Sci Total Environ 251–252:265–275

    Article  Google Scholar 

  44. 44.

    Whelan MJ, Van Egmond R, Guymer I, Lacoursière JO, Vought LMB, Finnegan C, Fox KK, Sparham C, O’Connor S, Vaughan M, Pearson JM (2007) Water Res 41:4730–4740

    Article  CAS  Google Scholar 

  45. 45.

    Richards K (1982) Rivers. Form and process in alluvial channels. Methuen, London

    Google Scholar 

  46. 46.

    Corsi SR, Zitomer DH, Field JA, Cancilla DA (2003) Environ Sci Technol 37:4031–4037

    Article  CAS  Google Scholar 

  47. 47.

    Commission E (2003) Technical guidance document on risk assessment: Part II. European Commission Joint Research Centre, Ispra

    Google Scholar 

  48. 48.

    Ahel M, Giger W, Koch M (1994) Water Res 28:1131–1142

    Article  CAS  Google Scholar 

  49. 49.

    Rule KL, Comber SDW, Ross D, Thornton A, Makropoulos CK, Rautiu R (2006) Water Environ J 20:177–184

    CAS  Google Scholar 

  50. 50.

    Farré M, Klöter G, Petrovic M, Alonso MC, De Alda MJL, Barceló D (2002) Anal Chim Acta 456:19–30

    Article  Google Scholar 

  51. 51.

    Gunnarsson L, Adolfsson-Erici M, Björlenius B, Rutgersson C, Förlin L, Larsson DGJ (2009) Sci Total Environ 407:5235–5242

    Article  CAS  Google Scholar 

  52. 52.

    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  53. 53.

    Loyo-Rosales JE, Rice CP, Torrents A (2007) Environ Sci Technol 41:6815–6821

    Article  CAS  Google Scholar 

  54. 54.

    Corvini PFX, Schäffer A, Schlosser D (2006) Appl Microbiol Biotechnol 72:223–243

    Article  CAS  Google Scholar 

  55. 55.

    Tanghe T, Devriese G, Verstraete W (1998) Water Res 32:2889–2896

    Article  CAS  Google Scholar 

  56. 56.

    Koh YKK, Chiu TY, Boobis AR, Scrimshaw MD, Bagnall JP, Soares A, Pollard S, Cartmell E, Lester JN (2009) Environ Sci Technol 43:6646–6654

    Article  CAS  Google Scholar 

  57. 57.

    Komori K, Okayasu Y, Yasojima M, Suzuki Y, Tanaka H (2006) Water Sci Technol 53:27–33

    CAS  Google Scholar 

  58. 58.

    Warhurst A (1994) An environmental assessment of alkylphenol ethoxylates and alkylphenols. Friends of the Earth, London

    Google Scholar 

  59. 59.

    Stasinakis AS, Petalas AV, Mamais D, Thomaidis NS (2008) Bioresour Technol 99:3458–3467

    Article  CAS  Google Scholar 

  60. 60.

    Stasinakis AS, Kordoutis CI, Tsiouma VC, Gatidou G, Thomaidis NS (2010) Bioresour Technol 101:2090–2095

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.P. is grateful to the U.K. Engineering and Physical Sciences Research Council (EPSRC) for the award of a PhD scholarship. We would like to thank the following UK Water Companies: Northumbrian Water, Anglian Water, Severn Trent Water, Yorkshire Water and United Utilities for providing their support and funding. Finally, Dan McMillan at Waters Ltd. is acknowledged for analytical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elise Cartmell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 91.8 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petrie, B., McAdam, E.J., Whelan, M.J. et al. The determination of nonylphenol and its precursors in a trickling filter wastewater treatment process. Anal Bioanal Chem 405, 3243–3253 (2013). https://doi.org/10.1007/s00216-013-6765-9

Download citation

Keywords

  • Surfactant
  • Alkylphenol
  • Carboxylate
  • UPLC
  • Model