Hybrid flow analyzer for automatic hollow-fiber-assisted ionic liquid-based liquid-phase microextraction with in-line membrane regeneration

Abstract

The proof-of-concept of a new methodology for in-line hollow-fiber (HF)-assisted three-phase liquid-phase microextraction (LPME) allowing for handling of the feed and acceptor aqueous solutions and of minute volumes of the organic extracting phase in a programmable flow mode is reported in this paper. The flow analyzer fosters in-line anchoring of ionic-liquid-laden extracting solution (10 % (v/v) methyltrioctyl ammonium chloride in kerosene) in the pores of a single-strand microporous polypropylene HF, and regeneration of the liquid-phase membrane itself for each individual analysis cycle in a fully automated mode. Using hexavalent chromium as a model analyte and 1,5-diphenylcarbazide as a chromogenic probe in the acceptor solution, the flow-based HF-LPME hyphenated system was harnessed to the clean-up of troublesome samples (viz., domestic wastewater and soil leachates) with concomitant enrichment of target species. Distinct extraction modes and chemistries were assessed for enhanced Cr(VI) permeability. A single sample plug was subjected to a twofold backward–forward flow extraction so as to decrease the thickness of the boundary layer at the HF shell side for improved extraction efficiency. Under the optimized physicochemical variables, a limit of detection of 4.6 μg L−1 Cr(VI), a dynamic linear range of up to 500 μg L−1 and intermediate precision better than 10 % were obtained for a sample volume of 2.8 mL buffered at pH 4 and a volume of organic extractant of 120 μL, with an enrichment factor of ca. 11 for a sample residence time in the donor compartment of merely 4.5 min. Analyte recoveries in domestic wastewaters were ≥83 % using external calibration with relative standard deviations better than 14 %, thereby demonstrating the expedient clean-up of samples with elevated content of dissolved organic carbon. The automatic HF-LPME method was validated in terms of bias against the SRM 2701 (NIST soil) preceded by the EPA alkaline digestion method 3060A. No significant differences between Cr(VI) concentration as obtained with the automatic HF-LPME system (546 ± 57 mg kg−1) and the certified value (551.2 ± 17.2 mg kg−1, expressed as mean ± combined uncertainty) were encountered at the 0.05 significance level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Anastas PT (1999) Crit Rev Anal Chem 29:167–175

    Article  CAS  Google Scholar 

  2. 2.

    Armenta S, Garrigues S, de la Guardia M (2008) TrAC-Trends Anal Chem 27:497–511

    Article  CAS  Google Scholar 

  3. 3.

    Jain A, Verma KK (2011) Anal Chim Acta 706:37–65

    Article  CAS  Google Scholar 

  4. 4.

    Pena-Pereira F, Lavilla I, Bendicho C (2010) TrAC-Trends Anal Chem 29:617–628

    Article  CAS  Google Scholar 

  5. 5.

    Mahugo-Santana C, Sosa-Ferrera Z, Torres-Padrón ME, Santana-Rodríguez JJ (2011) TrAC-Trends Anal Chem 30:731–748

    Article  CAS  Google Scholar 

  6. 6.

    Han D, Row KH (2012) Microchim Acta 176:1–22

    Article  CAS  Google Scholar 

  7. 7.

    Asensio-Ramos M, Ravelo-Pérez LM, González-Curbelo MT, Hernández-Borges J (2011) J Chromatogr A 1218:7415–7437

    Article  CAS  Google Scholar 

  8. 8.

    Cruz-Vera M, Lucena R, Cárdenas S, Valcárcel M (2011) Anal Methods 3:1719–1728

    Article  CAS  Google Scholar 

  9. 9.

    Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A 1217:2342–2357

    Article  CAS  Google Scholar 

  10. 10.

    Zgoła-Grześkowiak A, Grześkowiak T (2011) TrAC-Trends Anal Chem 30:1382–1399

    Article  Google Scholar 

  11. 11.

    Pedersen-Bjergaard S, Rasmussen KE (2008) J Chromatogr A 1184:132–142

    Article  CAS  Google Scholar 

  12. 12.

    Chimuka L, Cukrowska E, Michel M, Buszewki B (2011) TrAC-Trends Anal Chem 30:1781–1792

    Article  CAS  Google Scholar 

  13. 13.

    Bello-López MA, Ramos-Payán M, Ocaña-González JA, Fernández-Torres R, Callejón-Mojón M (2012) Anal Lett 45:804–830

    Article  Google Scholar 

  14. 14.

    Lee J, Lee HK, Rasmussen KE, Pedersen-Bjergaard S (2008) Anal Chim Acta 624:253–268

    Article  CAS  Google Scholar 

  15. 15.

    Ghambarian M, Yamini Y, Esrafili A (2012) Microchim Acta 177:271–294

    Article  CAS  Google Scholar 

  16. 16.

    Pedersen-Bjergaard S, Rasmussen KE (2008) TrAC-Trends Anal Chem 27:934–941

    Article  CAS  Google Scholar 

  17. 17.

    Gjelstad A, Pedersen-Bjergaard S (2011) Bioanalysis 3:787–797

    Article  CAS  Google Scholar 

  18. 18.

    Petersen NJ, Rasmussen KE, Pedersen-Bjergaard S, Gjelstad A (2011) Anal Sci 27:965–972

    Article  CAS  Google Scholar 

  19. 19.

    Wang X, Saridara C, Mitra S (2005) Anal Chim Acta 543:92–98

    Article  CAS  Google Scholar 

  20. 20.

    Hylton K, Mitra S (2008) Anal Chim Acta 607:45–49

    Article  CAS  Google Scholar 

  21. 21.

    Petersen NJ, Jensen H, Hansen SH, Foss ST, Snakenborg D, Pedersen-Bjergaard S (2010) Microfluid Nanofluid 9:881–888

    Article  CAS  Google Scholar 

  22. 22.

    Petersen NJ, Foss ST, Jensen H, Hansen SH, Skonberg C, Snakenborg D, Kutter JP, Pedersen-Bjergaard S (2011) Anal Chem 83:44–51

    Article  CAS  Google Scholar 

  23. 23.

    Ramos-Payán MD, Jensen H, Petersen NJ, Hansen SH, Pedersen-Bjergaard S (2012) Anal Chim Acta 735:46–53

    Article  Google Scholar 

  24. 24.

    Kuban P, Bocek P (2012) J Chromatogr A 1234:2–8

    Article  CAS  Google Scholar 

  25. 25.

    Kuban P, Kiplagat IK, Bocek P (2012) Electrophoresis 33:2695–2702

    Article  CAS  Google Scholar 

  26. 26.

    Pantuckova P, Kuban P, Bocek P (2012) Electrophoresis. doi:10.1002/elps.201200369

  27. 27.

    Guo X, Mitra S (2000) J Chromatogr A 904:189–196

    Article  CAS  Google Scholar 

  28. 28.

    Larsson N, Petersson E, Rylander M, Jönsson JÅ (2009) Anal Methods 1:59–67

    Article  CAS  Google Scholar 

  29. 29.

    Wang X, Kou D, Mitra S (2005) J Chromatogr A 1089:39–44

    Article  CAS  Google Scholar 

  30. 30.

    Larsson N, Utterback K, Toräng L, Risberg J, Gustafsson P, Mayer P, Jönsson JÅ (2009) Chemosphere 76:1213–1220

    Article  CAS  Google Scholar 

  31. 31.

    Pálmarsdóttir S, Thordarson E, Edholm L-E, Jönsson JÅ, Mathiasson L (1997) Anal Chem 69:1732–1737

    Article  Google Scholar 

  32. 32.

    Pálmarsdóttir S, Mathiasson L, Jönsson JÅ, Edholm L-E (1996) J Capillary Electrophor 3:255–260

    Google Scholar 

  33. 33.

    Sikanen T, Pedersen-Bjergaard S, Jensen H, Kostiainen R, Rasmussen KE, Kotiaho T (2010) Anal Chim Acta 658:133–140

    Article  CAS  Google Scholar 

  34. 34.

    Rosende M, Miró M, Segundo MA, Lima JLFC, Cerda V (2011) Anal Bioanal Chem 400:2217–2227

    Article  CAS  Google Scholar 

  35. 35.

    Wongsuchoto S, Nitiyanontakit S, Varanusupakul P (2012) J Chem Chem Eng 6:299–306

    CAS  Google Scholar 

  36. 36.

    Long XB, Miró M, Hansen EH (2005) Anal Chem 77:6032–6040

    Article  CAS  Google Scholar 

  37. 37.

    Castillo E, Granados M, Cortina JL (2002) Anal Chim Acta 464:197–208

    Article  CAS  Google Scholar 

  38. 38.

    Sandell EB, Onishi H (1978) Photometric determination of traces of metals, vol. 3, 4th edn. Wiley, New York

    Google Scholar 

  39. 39.

    Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, New York

    Google Scholar 

  40. 40.

    Dejaegher B, Vander Heyden Y (2008) LC–GC Eur 21:96–102

    Google Scholar 

  41. 41.

    Durfor CN, Becker E (1964) Public Water Supplies of the 100 largest cities in the US. US Geological Survey, US Govt Print Off, Washington

    Google Scholar 

  42. 42.

    Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry, 5th edn. Pearson Education Ltd, Harlow, pp 41–45, chap 3

    Google Scholar 

  43. 43.

    Nagourney SJ, Wilson SA, Buckley B, Skip-Kingston HM, Yang SY, Long SE (2008) J Anal At Spectrom 23:1550–1554

    Article  CAS  Google Scholar 

  44. 44.

    Slampova A, Kuban P, Bocek P (2012) J Chromatogr A 1234:32–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from Thailand Research Fund under the Royal Golden Jubilee Ph.D. Program (PHD/0068/2551) to Sira Nitiyanontakit and Pakorn Varanusupakul. Pakorn Varanusupakul extends his appreciation to the National Research Council of Thailand (NRCT) through the High Throughput Screening/Analysis: Tool for Drug Discovery, Disease Diagnosis and Heath Safety Project. Manuel Miró extends his appreciation to the Spanish Ministry of Economy and Competiveness for financial support through project CTM2010-17214.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Miró.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nitiyanontakit, S., Varanusupakul, P. & Miró, M. Hybrid flow analyzer for automatic hollow-fiber-assisted ionic liquid-based liquid-phase microextraction with in-line membrane regeneration. Anal Bioanal Chem 405, 3279–3288 (2013). https://doi.org/10.1007/s00216-013-6744-1

Download citation

Keywords

  • Automation
  • Supported liquid membrane
  • Ionic liquid
  • Miniaturization
  • In-line membrane regeneration