Abstract
Infections with Chlamydia pneumoniae cause several respiratory diseases, such as community-acquired pneumonia, bronchitis or sinusitis. Here, we present an integrated non-targeted metabolomics analysis applying ultra-high-resolution mass spectrometry and ultra-performance liquid chromatography mass spectrometry to determine metabolite alterations in C. pneumoniae-infected HEp-2 cells. Most important permutations are elaborated using uni- and multivariate statistical analysis, logD retention time regression and mass defect-based network analysis. Classes of metabolites showing high variations upon infection are lipids, carbohydrates and amino acids. Moreover, we observed several non-annotated compounds as predominantly abundant after infection, which are promising biomarker candidates for drug-target and diagnostic research.
This is a preview of subscription content, log in to check access.









Abbreviations
- DI:
-
Direct injection
- EB:
-
Elementary bodies
- ESI:
-
Electrospray ionization
- FCS:
-
Fetal calf serum
- GSH:
-
Glutathione
- GSSG:
-
Oxidized glutathione
- HILIC:
-
Hydrophilic interaction liquid chromatography
- ICR/FT-MS:
-
Ion cyclotron resonance Fourier transform mass spectrometry
- m/z :
-
Mass/charge
- NDP:
-
Nucleoside-diphosphate
- NEAA:
-
Non-essential amino acids
- NTP:
-
Nucleoside-triphosphate
- PCA:
-
Principal component analysis
- PLS-DA:
-
Partial least square discriminative analysis
- RP:
-
Reversed phase
- S/N:
-
Signal-to-noise ratio
- UPLC:
-
Ultra-performance liquid chromatography
- VIP:
-
Variable importance in projection
References
- 1.
Robertson DG, Watkins PB, Reily MD (2011) Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci 120(Suppl 1):S146–S170. doi:10.1093/toxsci/kfq358
- 2.
Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5(9):763–769. doi:10.1038/nrm1451nrm1451
- 3.
Goodacre R (2007) Metabolomics of a superorganism. J Nutr 137(1 Suppl):259S–266S
- 4.
Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489. doi:10.1146/annurev.arplant.043008.09203510.1146/annurev.arplant.043008.092035
- 5.
Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmuller G, Kato BS, Mewes HW, Meitinger T, de Angelis MH, Kronenberg F, Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42(2):137–141. doi:10.1038/ng.507
- 6.
Lucio M, Fekete A, Weigert C, Wagele B, Zhao X, Chen J, Fritsche A, Haring HU, Schleicher ED, Xu G, Schmitt-Kopplin P, Lehmann R (2010) Insulin sensitivity is reflected by characteristic metabolic fingerprints—a Fourier transform mass spectrometric non-targeted metabolomics approach. PLoS One 5(10):e13317. doi:10.1371/journal.pone.0013317
- 7.
Forst CV (2006) Host–pathogen systems biology. Drug Discov Today 11(5–6):220–227. doi:10.1016/S1359-6446(05)03735-9
- 8.
Grayston JT (1992) Infections caused by Chlamydia pneumoniae strain TWAR. Clin Infect Dis 15(5):757–761
- 9.
Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21(4):385–389. doi:10.1038/7716
- 10.
Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282(5389):754–759
- 11.
Su H, McClarty G, Dong F, Hatch GM, Pan ZK, Zhong G (2004) Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem 279(10):9409–9416. doi:10.1074/jbc.M312008200M312008200
- 12.
Carabeo RA, Mead DJ, Hackstadt T (2003) Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci U S A 100(11):6771–6776. doi:10.1073/pnas.11312891001131289100
- 13.
Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA (1996) Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15(5):964–977
- 14.
Hatch GM, McClarty G (1998) Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect Immun 66(8):3727–3735
- 15.
Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer TF (2009) Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457(7230):731–735. doi:10.1038/nature07578
- 16.
Moore ER, Fischer ER, Mead DJ, Hackstadt T (2008) The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 9(12):2130–2140. doi:10.1111/j.1600-0854.2008.00828.x
- 17.
Wylie JL, Hatch GM, McClarty G (1997) Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 179(23):7233–7242
- 18.
Tse SM, Mason D, Botelho RJ, Chiu B, Reyland M, Hanada K, Inman RD, Grinstein S (2005) Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: possible role in the inhibition of host cell apoptosis. J Biol Chem 280(26):25210–25215. doi:10.1074/jbc.M501980200
- 19.
van Ooij C, Kalman L, van Ijzendoorn S, Nishijima M, Hanada K, Mostov K, Engel JN (2000) Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis. Cell Microbiol 2(6):627–637
- 20.
Liu W, He P, Cheng B, Mei CL, Wang YF, Wan JJ (2010) Chlamydia pneumoniae disturbs cholesterol homeostasis in human THP-1 macrophages via JNK-PPARgamma dependent signal transduction pathways. Microbes Infect 12(14–15):1226–1235. doi:10.1016/j.micinf.2010.09.004
- 21.
Allan I, Hatch TP, Pearce JH (1985) Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms. J Gen Microbiol 131(12):3171–3177
- 22.
Allan I, Pearce JH (1983) Differential amino acid utilization by Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and its regulatory effect on chlamydial growth. J Gen Microbiol 129(7):1991–2000
- 23.
Hatch TP, Al-Hossainy E, Silverman JA (1982) Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol 150(2):662–670
- 24.
Iliffe-Lee ER, McClarty G (1999) Glucose metabolism in Chlamydia trachomatis: the 'energy parasite' hypothesis revisited. Mol Microbiol 33(1):177–187
- 25.
Iliffe-Lee ER, McClarty G (2000) Regulation of carbon metabolism in Chlamydia trachomatis. Mol Microbiol 38(1):20–30
- 26.
Ojcius DM, Degani H, Mispelter J, Dautry-Varsat A (1998) Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem 273(12):7052–7058
- 27.
Skipp P, Robinson J, O'Connor CD, Clarke IN (2005) Shotgun proteomic analysis of Chlamydia trachomatis. Proteomics 5(6):1558–1573. doi:10.1002/pmic.200401044
- 28.
Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55(1):143–190
- 29.
Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH (2011) Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 82(5):1185–1203. doi:10.1111/j.1365-2958.2011.07877.x
- 30.
Blasi F, Tarsia P, Arosio C, Fagetti L, Allegra L (1998) Epidemiology of Chlamydia pneumoniae. Clin Microbiol Infect 4(Suppl 4):S1–S6
- 31.
Cocchiaro JL, Valdivia RH (2009) New insights into Chlamydia intracellular survival mechanisms. Cell Microbiol 11(11):1571–1578. doi:10.1111/j.1462-5822.2009.01364.x
- 32.
La MV, Raoult D, Renesto P (2008) Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol Rev 32(3):440–460. doi:10.1111/j.1574-6976.2008.00103.x
- 33.
Wyrick PB (2000) Intracellular survival by Chlamydia. Cell Microbiol 2(4):275–282
- 34.
Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24(2):223–231. doi:10.1002/mas.20011
- 35.
Ohta D, Kanaya S, Suzuki H (2010) Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Curr Opin Biotechnol 21(1):35–44. doi:10.1016/j.copbio.2010.01.012
- 36.
Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma 11:395. doi:10.1186/1471-2105-11-395
- 37.
Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193. doi:10.1016/S0076-6879(06)11009-5
- 38.
Suhre K, Schmitt-Kopplin P (2008) MassTRIX: mass translator into pathways. Nucleic Acids Res 36(Web Server issue):W481–W484. doi:10.1093/nar/gkn194
- 39.
Tziotis D, Hertkorn N, Schmitt-Kopplin P (2011) Kendrick-analogous network visualisation of ion cyclotron resonance Fourier transform mass spectra: improved options for the assignment of elemental compositions and the classification of organic molecular complexity. Eur J Mass Spectrom (Chichester, Eng) 17(4):415–421. doi:10.1255/ejms.1135
- 40.
Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM (2008) Natural organic matter and the event horizon of mass spectrometry. Anal Chem 80(23):8908–8919. doi:10.1021/ac800464g
- 41.
Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci U S A 107(7):2763–2768. doi:10.1073/pnas.0912157107
- 42.
Rossello-Mora R, Lucio M, Pena A, Brito-Echeverria J, Lopez-Lopez A, Valens-Vadell M, Frommberger M, Anton J, Schmitt-Kopplin P (2008) Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber. ISME J 2(3):242–253. doi:10.1038/ismej.2007.93
- 43.
Elwell CA, Engel JN (2012) Lipid acquisition by intracellular Chlamydiae. Cell Microbiol 14(7):1010–1018. doi:10.1111/j.1462-5822.2012.01794.x
- 44.
Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28(6):1397–1406
- 45.
Conrad M, Sato H (2011) The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (−): cystine supplier and beyond. Amino Acids 42(1):231–246. doi:10.1007/s00726-011-0867-5
- 46.
Lazarev VN, Borisenko GG, Shkarupeta MM, Demina IA, Serebryakova MV, Galyamina MA, Levitskiy SA, Govorun VM (2010) The role of intracellular glutathione in the progression of Chlamydia trachomatis infection. Free Radic Biol Med 49(12):1947–1955. doi:10.1016/j.freeradbiomed.2010.09.024
- 47.
Gillespie E (1978) Concanavalin A increases glyoxalase enzyme activities in polymorphonuclear leukocytes and lymphocytes. J Immunol 121(3):923–925
- 48.
Azenabor AA, Job G, Adedokun OO (2005) Chlamydia pneumoniae infected macrophages exhibit enhanced plasma membrane fluidity and show increased adherence to endothelial cells. Mol Cell Biochem 269(1–2):69–84
- 49.
Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7(11):4030–4034
- 50.
Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24(12):543–548. doi:10.1016/j.tibtech.2006.10.006
- 51.
Breitling R, Vitkup D, Barrett MP (2008) New surveyor tools for charting microbial metabolic maps. Nat Rev Microbiol 6(2):156–161. doi:10.1038/nrmicro1797
Acknowledgments
This work received financial support from the ERA-NET PathoGenoMics ‘Pathomics’ (0315442C).
Author information
Affiliations
Corresponding author
Additional information
Published in the topical collection Metabolomics and Metabolite Profiling with guest editors Rainer Schuhmacher, Rudolf Krska, Roy Goodacre, and Wolfram Weckwerth.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 951 kb)
Rights and permissions
About this article
Cite this article
Müller, C., Dietz, I., Tziotis, D. et al. Molecular cartography in acute Chlamydia pneumoniae infections—a non-targeted metabolomics approach. Anal Bioanal Chem 405, 5119–5131 (2013). https://doi.org/10.1007/s00216-013-6732-5
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Mass spectrometry
- Host–pathogen interactions
- Liquid chromatography