Molecular cartography in acute Chlamydia pneumoniae infections—a non-targeted metabolomics approach

Abstract

Infections with Chlamydia pneumoniae cause several respiratory diseases, such as community-acquired pneumonia, bronchitis or sinusitis. Here, we present an integrated non-targeted metabolomics analysis applying ultra-high-resolution mass spectrometry and ultra-performance liquid chromatography mass spectrometry to determine metabolite alterations in C. pneumoniae-infected HEp-2 cells. Most important permutations are elaborated using uni- and multivariate statistical analysis, logD retention time regression and mass defect-based network analysis. Classes of metabolites showing high variations upon infection are lipids, carbohydrates and amino acids. Moreover, we observed several non-annotated compounds as predominantly abundant after infection, which are promising biomarker candidates for drug-target and diagnostic research.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

DI:

Direct injection

EB:

Elementary bodies

ESI:

Electrospray ionization

FCS:

Fetal calf serum

GSH:

Glutathione

GSSG:

Oxidized glutathione

HILIC:

Hydrophilic interaction liquid chromatography

ICR/FT-MS:

Ion cyclotron resonance Fourier transform mass spectrometry

m/z :

Mass/charge

NDP:

Nucleoside-diphosphate

NEAA:

Non-essential amino acids

NTP:

Nucleoside-triphosphate

PCA:

Principal component analysis

PLS-DA:

Partial least square discriminative analysis

RP:

Reversed phase

S/N:

Signal-to-noise ratio

UPLC:

Ultra-performance liquid chromatography

VIP:

Variable importance in projection

References

  1. 1.

    Robertson DG, Watkins PB, Reily MD (2011) Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci 120(Suppl 1):S146–S170. doi:10.1093/toxsci/kfq358

    Article  CAS  Google Scholar 

  2. 2.

    Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5(9):763–769. doi:10.1038/nrm1451nrm1451

    Article  CAS  Google Scholar 

  3. 3.

    Goodacre R (2007) Metabolomics of a superorganism. J Nutr 137(1 Suppl):259S–266S

    CAS  Google Scholar 

  4. 4.

    Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489. doi:10.1146/annurev.arplant.043008.09203510.1146/annurev.arplant.043008.092035

    Article  CAS  Google Scholar 

  5. 5.

    Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmuller G, Kato BS, Mewes HW, Meitinger T, de Angelis MH, Kronenberg F, Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42(2):137–141. doi:10.1038/ng.507

    Article  CAS  Google Scholar 

  6. 6.

    Lucio M, Fekete A, Weigert C, Wagele B, Zhao X, Chen J, Fritsche A, Haring HU, Schleicher ED, Xu G, Schmitt-Kopplin P, Lehmann R (2010) Insulin sensitivity is reflected by characteristic metabolic fingerprints—a Fourier transform mass spectrometric non-targeted metabolomics approach. PLoS One 5(10):e13317. doi:10.1371/journal.pone.0013317

    Article  Google Scholar 

  7. 7.

    Forst CV (2006) Host–pathogen systems biology. Drug Discov Today 11(5–6):220–227. doi:10.1016/S1359-6446(05)03735-9

    Article  CAS  Google Scholar 

  8. 8.

    Grayston JT (1992) Infections caused by Chlamydia pneumoniae strain TWAR. Clin Infect Dis 15(5):757–761

    Article  CAS  Google Scholar 

  9. 9.

    Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21(4):385–389. doi:10.1038/7716

    Article  CAS  Google Scholar 

  10. 10.

    Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282(5389):754–759

    Article  CAS  Google Scholar 

  11. 11.

    Su H, McClarty G, Dong F, Hatch GM, Pan ZK, Zhong G (2004) Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem 279(10):9409–9416. doi:10.1074/jbc.M312008200M312008200

    Article  CAS  Google Scholar 

  12. 12.

    Carabeo RA, Mead DJ, Hackstadt T (2003) Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci U S A 100(11):6771–6776. doi:10.1073/pnas.11312891001131289100

    Article  CAS  Google Scholar 

  13. 13.

    Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA (1996) Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15(5):964–977

    CAS  Google Scholar 

  14. 14.

    Hatch GM, McClarty G (1998) Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect Immun 66(8):3727–3735

    CAS  Google Scholar 

  15. 15.

    Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer TF (2009) Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457(7230):731–735. doi:10.1038/nature07578

    Article  CAS  Google Scholar 

  16. 16.

    Moore ER, Fischer ER, Mead DJ, Hackstadt T (2008) The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic 9(12):2130–2140. doi:10.1111/j.1600-0854.2008.00828.x

    Article  CAS  Google Scholar 

  17. 17.

    Wylie JL, Hatch GM, McClarty G (1997) Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J Bacteriol 179(23):7233–7242

    CAS  Google Scholar 

  18. 18.

    Tse SM, Mason D, Botelho RJ, Chiu B, Reyland M, Hanada K, Inman RD, Grinstein S (2005) Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: possible role in the inhibition of host cell apoptosis. J Biol Chem 280(26):25210–25215. doi:10.1074/jbc.M501980200

    Article  CAS  Google Scholar 

  19. 19.

    van Ooij C, Kalman L, van Ijzendoorn S, Nishijima M, Hanada K, Mostov K, Engel JN (2000) Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis. Cell Microbiol 2(6):627–637

    Article  Google Scholar 

  20. 20.

    Liu W, He P, Cheng B, Mei CL, Wang YF, Wan JJ (2010) Chlamydia pneumoniae disturbs cholesterol homeostasis in human THP-1 macrophages via JNK-PPARgamma dependent signal transduction pathways. Microbes Infect 12(14–15):1226–1235. doi:10.1016/j.micinf.2010.09.004

    Article  CAS  Google Scholar 

  21. 21.

    Allan I, Hatch TP, Pearce JH (1985) Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms. J Gen Microbiol 131(12):3171–3177

    CAS  Google Scholar 

  22. 22.

    Allan I, Pearce JH (1983) Differential amino acid utilization by Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and its regulatory effect on chlamydial growth. J Gen Microbiol 129(7):1991–2000

    CAS  Google Scholar 

  23. 23.

    Hatch TP, Al-Hossainy E, Silverman JA (1982) Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol 150(2):662–670

    CAS  Google Scholar 

  24. 24.

    Iliffe-Lee ER, McClarty G (1999) Glucose metabolism in Chlamydia trachomatis: the 'energy parasite' hypothesis revisited. Mol Microbiol 33(1):177–187

    Article  CAS  Google Scholar 

  25. 25.

    Iliffe-Lee ER, McClarty G (2000) Regulation of carbon metabolism in Chlamydia trachomatis. Mol Microbiol 38(1):20–30

    Article  CAS  Google Scholar 

  26. 26.

    Ojcius DM, Degani H, Mispelter J, Dautry-Varsat A (1998) Enhancement of ATP levels and glucose metabolism during an infection by Chlamydia. NMR studies of living cells. J Biol Chem 273(12):7052–7058

    Article  CAS  Google Scholar 

  27. 27.

    Skipp P, Robinson J, O'Connor CD, Clarke IN (2005) Shotgun proteomic analysis of Chlamydia trachomatis. Proteomics 5(6):1558–1573. doi:10.1002/pmic.200401044

    Article  CAS  Google Scholar 

  28. 28.

    Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55(1):143–190

    CAS  Google Scholar 

  29. 29.

    Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH (2011) Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 82(5):1185–1203. doi:10.1111/j.1365-2958.2011.07877.x

    Article  CAS  Google Scholar 

  30. 30.

    Blasi F, Tarsia P, Arosio C, Fagetti L, Allegra L (1998) Epidemiology of Chlamydia pneumoniae. Clin Microbiol Infect 4(Suppl 4):S1–S6

    Google Scholar 

  31. 31.

    Cocchiaro JL, Valdivia RH (2009) New insights into Chlamydia intracellular survival mechanisms. Cell Microbiol 11(11):1571–1578. doi:10.1111/j.1462-5822.2009.01364.x

    Article  CAS  Google Scholar 

  32. 32.

    La MV, Raoult D, Renesto P (2008) Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol Rev 32(3):440–460. doi:10.1111/j.1574-6976.2008.00103.x

    Article  CAS  Google Scholar 

  33. 33.

    Wyrick PB (2000) Intracellular survival by Chlamydia. Cell Microbiol 2(4):275–282

    Article  CAS  Google Scholar 

  34. 34.

    Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24(2):223–231. doi:10.1002/mas.20011

    Article  CAS  Google Scholar 

  35. 35.

    Ohta D, Kanaya S, Suzuki H (2010) Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Curr Opin Biotechnol 21(1):35–44. doi:10.1016/j.copbio.2010.01.012

    Article  CAS  Google Scholar 

  36. 36.

    Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma 11:395. doi:10.1186/1471-2105-11-395

    Article  Google Scholar 

  37. 37.

    Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193. doi:10.1016/S0076-6879(06)11009-5

    Article  CAS  Google Scholar 

  38. 38.

    Suhre K, Schmitt-Kopplin P (2008) MassTRIX: mass translator into pathways. Nucleic Acids Res 36(Web Server issue):W481–W484. doi:10.1093/nar/gkn194

    Article  CAS  Google Scholar 

  39. 39.

    Tziotis D, Hertkorn N, Schmitt-Kopplin P (2011) Kendrick-analogous network visualisation of ion cyclotron resonance Fourier transform mass spectra: improved options for the assignment of elemental compositions and the classification of organic molecular complexity. Eur J Mass Spectrom (Chichester, Eng) 17(4):415–421. doi:10.1255/ejms.1135

    Article  CAS  Google Scholar 

  40. 40.

    Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM (2008) Natural organic matter and the event horizon of mass spectrometry. Anal Chem 80(23):8908–8919. doi:10.1021/ac800464g

    Article  CAS  Google Scholar 

  41. 41.

    Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci U S A 107(7):2763–2768. doi:10.1073/pnas.0912157107

    Article  CAS  Google Scholar 

  42. 42.

    Rossello-Mora R, Lucio M, Pena A, Brito-Echeverria J, Lopez-Lopez A, Valens-Vadell M, Frommberger M, Anton J, Schmitt-Kopplin P (2008) Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber. ISME J 2(3):242–253. doi:10.1038/ismej.2007.93

    Article  CAS  Google Scholar 

  43. 43.

    Elwell CA, Engel JN (2012) Lipid acquisition by intracellular Chlamydiae. Cell Microbiol 14(7):1010–1018. doi:10.1111/j.1462-5822.2012.01794.x

    Article  CAS  Google Scholar 

  44. 44.

    Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28(6):1397–1406

    Article  CAS  Google Scholar 

  45. 45.

    Conrad M, Sato H (2011) The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (−): cystine supplier and beyond. Amino Acids 42(1):231–246. doi:10.1007/s00726-011-0867-5

    Article  Google Scholar 

  46. 46.

    Lazarev VN, Borisenko GG, Shkarupeta MM, Demina IA, Serebryakova MV, Galyamina MA, Levitskiy SA, Govorun VM (2010) The role of intracellular glutathione in the progression of Chlamydia trachomatis infection. Free Radic Biol Med 49(12):1947–1955. doi:10.1016/j.freeradbiomed.2010.09.024

    Article  CAS  Google Scholar 

  47. 47.

    Gillespie E (1978) Concanavalin A increases glyoxalase enzyme activities in polymorphonuclear leukocytes and lymphocytes. J Immunol 121(3):923–925

    CAS  Google Scholar 

  48. 48.

    Azenabor AA, Job G, Adedokun OO (2005) Chlamydia pneumoniae infected macrophages exhibit enhanced plasma membrane fluidity and show increased adherence to endothelial cells. Mol Cell Biochem 269(1–2):69–84

    Article  CAS  Google Scholar 

  49. 49.

    Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7(11):4030–4034

    Article  CAS  Google Scholar 

  50. 50.

    Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24(12):543–548. doi:10.1016/j.tibtech.2006.10.006

    Article  CAS  Google Scholar 

  51. 51.

    Breitling R, Vitkup D, Barrett MP (2008) New surveyor tools for charting microbial metabolic maps. Nat Rev Microbiol 6(2):156–161. doi:10.1038/nrmicro1797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from the ERA-NET PathoGenoMics ‘Pathomics’ (0315442C).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philippe Schmitt-Kopplin.

Additional information

Published in the topical collection Metabolomics and Metabolite Profiling with guest editors Rainer Schuhmacher, Rudolf Krska, Roy Goodacre, and Wolfram Weckwerth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 951 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Müller, C., Dietz, I., Tziotis, D. et al. Molecular cartography in acute Chlamydia pneumoniae infections—a non-targeted metabolomics approach. Anal Bioanal Chem 405, 5119–5131 (2013). https://doi.org/10.1007/s00216-013-6732-5

Download citation

Keywords

  • Mass spectrometry
  • Host–pathogen interactions
  • Liquid chromatography