Skip to main content
Log in

Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Conventionally, microbial bioelectrochemical assays have been conducted using immobilized cells on an electrode that is placed in an electrochemical batch cell. In this paper, we describe a developed microfluidic platform with integrated microelectrode arrays for automated bioelectrochemical assays utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring” of S. cerevisiae cells using PVI-Os shows a significant improvement of bioelectrochemical monitoring in a microfluidic environment and functions as an effective immobilization matrix for cells that are not strongly adherent. The function of the developed microfluidic platform is demonstrated using two strains of S. cerevisiae, ENY.WA and its deletion mutant EBY44, which lacks the enzyme phosphoglucose isomerase. The cellular responses to introduced glucose and fructose were recorded for the two S. cerevisiae strains, and the obtained results are compared with previously published work when using an electrochemical batch cell, indicating that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays.

Microfluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kjeldsen T, Balschmidt P, Diers I, Hach M, Kaarsholm NC, Ludvigsen S (2001) Biotechnol Gen Eng Rev 18:89–121

    CAS  Google Scholar 

  2. Hugenholtz J, Smid EJ (2002) Curr Opin Biotechnol 13:497–507

    Article  CAS  Google Scholar 

  3. Hugenholtz J (2008) Int Dairy J 18:466–475

    Article  CAS  Google Scholar 

  4. Nevoigt E, Pilger R, Mast-Gerlach E, Schmidt U, Freihammer S, Eschenbrenner M, Garbe L, Stahl U (2002) FEMS Yeast Res 2:225–232

    CAS  Google Scholar 

  5. Zhang F, Rodriguez S, Keasling JD (2011) Curr Opin Biotechnol 22:775–783

    Article  CAS  Google Scholar 

  6. Stewart JD (2000) Curr Opin Biotechnol 11:363–368

    Article  CAS  Google Scholar 

  7. Pieper DH, Reineke W (2000) Curr Opin Biotechnol 11:262–270

    Article  CAS  Google Scholar 

  8. Ikeda T, Kato K, Maeda M, Tatsumi H, Kano K, Matsushita K (1997) J Electroanal Chem 430:197–204

    Article  Google Scholar 

  9. Baronian KHR, Gurazada S (2007) Biosens Bioelectron 22:2493–2499

    Article  CAS  Google Scholar 

  10. Nakamura H, Suzuki K, Ishikuro H, Kinoshita S, Koizumi R, Okuma S, Gotoh M, Karube I (2007) Talanta 72:210–216

    Article  CAS  Google Scholar 

  11. Pasco N, Baronian K, Jeffries C, Hay J (2000) Appl Microbiol Biotechnol 53:613–618

    Article  CAS  Google Scholar 

  12. Rawson DM, Willmer AJ, Turner APF (1989) Biosensors 4:299–311

    Article  CAS  Google Scholar 

  13. Zhao JS, Wang Z, Wang M, Wang HS, He QP, Zhang H (2008) Talanta 74:1686–1691

    Article  CAS  Google Scholar 

  14. Ertl P, Unterladstaetter U, Bayer K, Mikkelsen SR (2000) Anal Chem 72:4949–4956

    Article  CAS  Google Scholar 

  15. Zhao JS, Wang Z, Fu CG, Wang M, He QP (2008) Electroanalysis 20:1587–1592

    Article  CAS  Google Scholar 

  16. Kostesha N, Heiskanen A, Spegel C, Hahn-Hagerdal B, Gorwa-Grauslund M-F, Emneus J (2009) Bioelectrochemistry 76:180–188

    Article  CAS  Google Scholar 

  17. Heiskanen A, Spégel C, Kostesha N, Lindahl S, Ruzgas T, Emnéus J (2009) Anal Biochem 384:11–19

    Article  CAS  Google Scholar 

  18. Kostesha NV, Almeida JRM, Heiskanen AR, Gorwa-Grauslund MF, Hahn-Hagerdal B, Emneus J (2009) Anal Chem 81:9896–9901

    Article  CAS  Google Scholar 

  19. Lovley DR (2008) Curr Opin Biotechnol 19:564–571

    Article  CAS  Google Scholar 

  20. Kostesha N, Willquist K, Emneus J, van Niel EWJ (2011) Extremophiles 15:77–87

    Article  Google Scholar 

  21. Ikeda T, Kurosaki T, Takayama K, Kano K (1996) Anal Chem 68:192–198

    Article  CAS  Google Scholar 

  22. Baronian KHR, Downard AJ, Lowen RK, Pasco N (2002) Appl Microbiol Biotechnol 60:108–113

    Article  CAS  Google Scholar 

  23. Spégel CF, Heiskanen AR, Kostesha N, Johanson TH, Gorwa-Grauslund MF, Koudelka-Hep M, Emneus J, Ruzgas T (2007) Anal Chem 79:8919–8926

    Article  Google Scholar 

  24. Schröder U (2007) Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  25. Gregg BA, Heller A (1991) J Phys Chem 95:5970–5975

    Article  CAS  Google Scholar 

  26. Vostiar I, Ferapontova EE, Gorton L (2004) Electrochem Commun 6:621–626

    Article  CAS  Google Scholar 

  27. Timur S, Haghighi B, Tkac J, Pazarhoglu N, Telefoncu A, Gorton L (2007) Bioelectrochemistry 71:38–45

    Article  CAS  Google Scholar 

  28. Alferov S, Coman V, Gustavsson T, Reshetilov A, von Wachenfeldt C, Hagerhall C, Gorton L (2009) Electrochim Acta 54:4979–4984

    Article  CAS  Google Scholar 

  29. Coman V, Gustavsson T, Finkelsteinas A, von Wachenfeldt C, Hägerhäll C, Gorton L (2009) J Am Chem Soc 131:16171–16176

    Article  CAS  Google Scholar 

  30. Hasan K, Patil SA, Górecki K, Leech D, Hägerhäll C, Gorton L (2012) Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer. Bioelectrochemistry. doi:10.1016/j.bioelechem.2012.05.004

  31. Shkil H, Schulte A, Guschin DA, Schuhmann W (2011) Chemphyschem 12:806–813

    Article  CAS  Google Scholar 

  32. Weibel DB, DiLuzio WR, Whitesides GM (2007) Nat Rev Microbiol 5:209–218

    Article  CAS  Google Scholar 

  33. Lee JW, Kjeang E (2010) A perspective on microfluidic biofuel cells. Biomicrofluidics. doi:10.1063/1.3515523:041301

  34. Qian F, Morse DE (2011) Trends Biotechnol 29:62–69

    Article  CAS  Google Scholar 

  35. Wang H-Y, Bernarda A, Huang C-Y, Lee D-J, Chang J-S (2011) Biores Technol 102:235–243

    Article  CAS  Google Scholar 

  36. Hou H, Li L, de Figueiredo P, Han A (2011) Biosens Bioelectron 26:2680–2684

    Article  CAS  Google Scholar 

  37. Ertl P, Wagner M, Corton E, Mikkelsen SR (2003) Biosens Bioelectron 18:907–916

    Article  CAS  Google Scholar 

  38. Gottschamel J, Richter L, Mak A, Jungreuthmayer C, Birnbaumer G, Milnera M, Brueckl H, Ertl P (2009) Anal Chem 81:8503–8512

    Article  CAS  Google Scholar 

  39. MicroChemicals GmbH (2003) Processing image reversal resists. MicroChemicals GmbH, Ulm. http://www.microchemicals.eu/technical_information/image_reversal_resists.pdf. Accessed 16 Feb 2012

  40. Fischer LM, Tenje M, Heiskanen AR, Masuda N, Castillo J, Bentien A, Emneus J, Jakobsen MH, Boisen A (2009) Microelectron Eng 86:1282–1285

    Article  CAS  Google Scholar 

  41. Gao ZQ, Binyamin G, Kim HH, Barton SC, Zhang YC, Heller A (2002) Angew Chem Int Ed 41:810–813

    Article  CAS  Google Scholar 

  42. Boles E, Zimmermann FK (1993) Curr Genet 23:187–191

    Article  CAS  Google Scholar 

  43. Boles E, Zimmermann FK (1994) Mol Gen Genet 243:363–368

    CAS  Google Scholar 

  44. Heiskanen A, Yakovleva J, Spegel C, Taboryski R, Koudelka-Hep M, Emneus J, Ruzgas T (2004) Electrochem Commun 6:219–224

    Article  CAS  Google Scholar 

  45. Skafte-Pedersen P, Sabourin D, Dufva M, Snakenborg D (2009) Lab Chip 9:3003–3006

    Article  CAS  Google Scholar 

  46. Gao QA, Guo YY, Zhang WY, Qi HL, Zhang CX (2011) Sens Actuators B 153:219–225

    Article  Google Scholar 

  47. Shin H, Kang C (2010) Bull Kor Chem Soc 31:3118–3122

    Article  CAS  Google Scholar 

  48. Zór K, Vergani M, Heiskanen A, Landini E, Carminati M, Coman V, Vedarethinam I, Skafte-Pedersen P, Skolimowski M, Martinez Serrano A, Kokaia M, Ramos Moreno T, Ghio A, Svendsen WE, Dimaki M, Keresztes Z, Adamovski M, Wollenberger U, Sabourin D, Ferrari G, Raiteri R, Sampietro M, Dufva M, Emnéus J (2011) Real-time monitoring of cellular dynamics using a microfluidic cell culture system with integrated electrode array and potentiostat. In: Landers JP, Herr A, Juncker D, Pamme N, Bienvenue J (eds) Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS2011), Seattle, Washington, USA, vol. 2, pp 1532–1535

  49. Guschin DA, Castillo J, Dimcheva N, Schuhmann W (2010) Anal Bioanal Chem 398:1661–1673

    Article  CAS  Google Scholar 

  50. Sabourin D, Skafte-Pedersen P, Søe MJ, Hemmingsen M, Alberti M, Coman V, Petersen J, Emnéus J, Kutter JP, Snakenborg D, Jørgensen F, Clausen C, Holmstrøm K, Dufva M (2012) JALA. doi:10.1177/2211068212461445

Download references

Acknowledgments

This work was supported by the EU FP-7 project EXCELL (NMP4-SL-2008-214706). Additional financial support is acknowledged by A. H. (Ørsted postdoctoral grant and Lundbeck Foundation grant no. R69-A6408), N. H. (EU FP-6 project MEST-CT-2004-514743), and L. G. (the Swedish Research Council project 2010-5031). We thank Prof. Eckhard Boles (Institute of Microbiology, Frankfurt, Germany) for sharing the ENY.WA and EBY44 strains with us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arto Heiskanen.

Additional information

Published in the topical collection Bioelectroanalysis with guest editors Nicolas Plumeré, Magdalena Gebala, and Wolfgang Schuhmann.

Arto Heiskanen and Vasile Coman contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4.46 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiskanen, A., Coman, V., Kostesha, N. et al. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment. Anal Bioanal Chem 405, 3847–3858 (2013). https://doi.org/10.1007/s00216-013-6709-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6709-4

Keywords

Navigation