Skip to main content
Log in

Binding kinetics of human cellular prion detection by DNA aptamers immobilized on a conducting polypyrrole

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We developed a biosensor based on the surface plasmon resonance (SPR) method for the study of the binding kinetics and detection of human cellular prions (PrPC) using DNA aptamers as bioreceptors. The biosensor was formed by immobilization of various biotinylated DNA aptamers on a surface of conducting polypyrrole modified by streptavidin. We demonstrated that PrPC interaction with DNA aptamers could be followed by measuring the variation of the resonance angle. This was studied using DNA aptamers of various configurations, including conventional single-stranded aptamers that contained a rigid double-stranded supporting part and aptamer dimers containing two binding sites. The kinetic constants determined by the SPR method suggest strong interaction of PrPC with various DNA aptamers depending on their configuration. SPR aptasensors have a high selectivity to PrPC and were regenerable by a brief wash in 0.1 M NaOH. The best limit of detection (4 nM) has been achieved with this biosensor based on DNA aptamers with one binding site but containing a double-stranded supporting part.

Aptasensors for kinetic evaluation and detection of prions by SPR

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Masters CL, Gajdusek DC, Gibbs CJ (1981) Brain 104:559–588

    Article  CAS  Google Scholar 

  2. Prusiner SB (1991) Science 252:1515–1522

    Article  CAS  Google Scholar 

  3. Pan KM, Baldwin M, Nguen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen EF, Prusiner SB (1993) Proc Natl Acad Sci USA 90:10962–10966

    Article  CAS  Google Scholar 

  4. Fournier-Wirth C, Jaffrezic-Renault N, Coste J (2010) Transfusion 50:2032–2045

    Article  CAS  Google Scholar 

  5. Safar JG, Geschwind MD, Deering C, Didorenko S, Sattavat M, Sanchez H, Serban A, Vey M, Baron H, Giles K, Miller BL, Dearmond SJ, Prusiner SB (2005) Proc Natl Acad Sci USA 102:3501–3506

    Article  CAS  Google Scholar 

  6. Puchtler H, Sweat F (1965) J Histochem Cytochem 13:693–694

    Article  CAS  Google Scholar 

  7. Westermark GT, Johnson KH, Westermark P (1999) Meth Enzymol 309:3–25

    Article  CAS  Google Scholar 

  8. Dezutter NA, Sciot RM, de Groot TJ, Bormans GM, Verbruggen AM (2001) Nuclear Med Commun 22:553–558

    Article  CAS  Google Scholar 

  9. Matsuno H, Niikura K, Okahata Y (2001) Chemistry 7:3305–3312

    Article  CAS  Google Scholar 

  10. Ando Y, Haraoka K, Terazaki H, Tanoue Y, Ishikawa K, Katsuragi S, Nakamura M, Sun X, Nakagawa K, Sasamoto K, Takesako K, Ishizaki T, Sasaki Y, Doh-ura K (2003) Lab Investig 83:1751–1759

    Article  CAS  Google Scholar 

  11. Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, Windl O, Kretzschmar HA, Weber T (1998) Ann Neurol 43:32–40

    Article  CAS  Google Scholar 

  12. Kuczius T, Koch R, Keyvani K, Karch H, Grassi J, Groschup MH (2007) European J Neurosci 25:2649–2655

    Article  Google Scholar 

  13. Kawatake S, Nishimura Y, Sakaguchi S, Iwaki T, Dohura K (2006) Biol Pharm Bull 29:927–932

    Article  CAS  Google Scholar 

  14. Cuccioloni M, Amici M, Eleuteri AM, Biagetti M, Barocci S, Angeletti M (2005) Proteins Struct Funct Bioinform 58:728–734

    Article  CAS  Google Scholar 

  15. Maissen M, Roeckl C, Glatzel M, Goldmann W, Aguzzi A (2001) Lancet 357:2026–2028

    Article  CAS  Google Scholar 

  16. Hianik T, Porfirieva A, Grman I, Evtugyn G (2009) Prot Pept Lett 16:363–367

    Article  CAS  Google Scholar 

  17. Scarano S, Scuffi C, Mascini M, Minunni M (2011) Anal Chim Acta 707:178–183

    Article  CAS  Google Scholar 

  18. Stenberg E, Persson B, Roos H, Urbaniczky C (1991) J Coll Interf Sci 143:513–526

    Article  CAS  Google Scholar 

  19. Li YJ, Bi LJ, Zhang XE, Zhou YF, Zhang JB, Chen YY, Li W, Zhang ZP (2006) Anal Bioanal Chem 386:1321–1326

    Article  CAS  Google Scholar 

  20. Wan JY, Wang X, Li JP, Liu WS, Xu M, Liu LN, Xu J, Wang HY, Gao HW (2009) Arch Virol 154:1901–1908

    Article  CAS  Google Scholar 

  21. Lê HQA, Sauriat-Dorizon H, Korri-Youssoufi H (2010) Anal Chim Acta 674:1–8

    Article  Google Scholar 

  22. Pollet J, Delport F, Janssen KPF, Jans K, Maes G, Pfeiffer H, Wevers M, Lammertyn J (2009) Biosens Bioelectr 25:864–869

    Article  CAS  Google Scholar 

  23. Ostatná V, Vaisocherová H, Homola J, Hianik T (2008) Anal Bioanal Chem 391:1861–1869

    Article  Google Scholar 

  24. Lee SJ, Youn BS, Park JW, Niazi JH, Kim YS, Gu MB (2008) Anal Chem 80:2867–2873

    Article  CAS  Google Scholar 

  25. Takemura K, Wang P, Vorberg I, Surewicz W, Priola SA, Kanthasamy A, Pottathil R, Chen SG, Sreevatsan S (2006) Exper Biol Med 231:204–214

    CAS  Google Scholar 

  26. Korri-Youssoufi H, Yassar A (2001) Biomacromolecules 2:58–64

    Article  CAS  Google Scholar 

  27. Skladal P, Horacek J (1999) Anal Lett 32:1519–1529

    Article  CAS  Google Scholar 

  28. Cavic BA, Thompson M (2001) Anal Chim Acta 469:101–113

    Article  Google Scholar 

  29. Sauerbrey G (1959) Z Phys 155:206–210

    Article  CAS  Google Scholar 

  30. Snejdárková M, Svobodova L, Polohova V, Hianik T (2008) Anal Bioanal Chem 390:1087–1091

    Article  Google Scholar 

  31. Zhou XC, Huang LQ, Li SFY (2001) Biosens Bioelectr 16:85–95

    Article  CAS  Google Scholar 

  32. O’Shannessy DJ, Brigham-Burke M, Soneson KK, Hensley P, Brooks I (1993) Anal Biochem 212:457–468

    Article  Google Scholar 

  33. Hianik T, Grman I, Karpisova I (2009) Chem Commun 41:6303–6305

    Article  Google Scholar 

  34. Neundlinger I, Poturnayova A, Karpisova I, Rankl C, Hinterdorfer P, Snejdarkova M, Hianik T, Ebner A (2011) Biophys J 101:1781–1787

    Article  CAS  Google Scholar 

  35. Ryazanova AY, Kubareva EA, Grman I, Lavrova NV, Ryazanova EM, Oretskaya TS, Hianik T (2011) Analyst 136:1227–1233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency (contracts No. APVV-0410-10, SK-FR-0025-09), by France Government, by Slovak Academy of Sciences under the project mnt-era.net (proposal No. 2009-50) and VEGA (project No. 1/0785/12). We are grateful to Dr. Human Rezaei and Dr. Jasmina Vidic from VIM group of INRA France for generous gift of PrPC proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Korri-Youssoufi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miodek, A., Poturnayová, A., Šnejdárková, M. et al. Binding kinetics of human cellular prion detection by DNA aptamers immobilized on a conducting polypyrrole. Anal Bioanal Chem 405, 2505–2514 (2013). https://doi.org/10.1007/s00216-012-6665-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6665-4

Keywords

Navigation