Abstract
Nanoporous and planar gold electrodes were utilised as supports for the redox enzymes Aspergillus niger glucose oxidase (GOx) and Corynascus thermophilus cellobiose dehydrogenase (CtCDH). Electrodes modified with hydrogels containing enzyme, Os-redox polymers and the cross-linking agent poly(ethylene glycol)diglycidyl ether were used as biosensors for the determination of glucose and lactose. Limits of detection of 6.0 (±0.4), 16.0 (±0.1) and 2.0 (±0.1) μM were obtained for CtCDH-modified lactose and glucose biosensors and GOx-modified glucose biosensors, respectively, at nanoporous gold electrodes. Biofuel cells composed of GOx- and CtCDH-modified gold electrodes were utilised as anodes, together with Myrothecium verrucaria bilirubin oxidase (MvBOD) or Melanocarpus albomyces laccase as cathodes, in biofuel cells. A maximum power density of 41 μW/cm2 was obtained for a CtCDH/MvBOD biofuel cell in 5 mM lactose and O2-saturated buffer (pH 7.4, 0.1 M phosphate, 150 mM NaCl).
This is a preview of subscription content, access via your institution.






References
Magner E (1998) Analyst 123:1967–1970
Heller A (1992) J Phys Chem 96:3579–3587
Hanefeld U, Gardossi L, Magner E (2009) Chem Soc Rev 38:453–468
Ghindilis AL, Atanasov P, Wilkins E (1997) Electroanal 9:661–674
Schuhmann W (2002) Rev Mol Biotech 82:425–441
Frew JE, Hill HAO (1988) European J Biochem 172:261–269
Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I (1999) Anal Chim Acta 400:91–108
Habermüller K, Mosbach M, Schuhmann W (2000) J Anal Chem 366:560–568
Christenson A, Dimcheva N, Ferapontova EE, Gorton L, Ruzgas T, Stoica L, Shleev S, Yaropolov AI, Haltrich D, Thorneley RNF, Aust SD (2004) Electroanal 16:1074–1092
Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Anal Chem 56(4):667–671
Battaglini F, Calvo EJ (1994) J Chem Soc 90:987–995
Valkiainen M, Tuurala S, Smolander M, Kaukoniemi O-V (2012) In: Steinberger-Wilckens R, Lehnert W (eds) Innovations in fuel cell technologies. RSC Publishing,
Mano N, Mao F, Heller A (2002) J Am Chem Soc 124:12962–12963
Mao F, Mano N, Heller A (2003) J Am Chem Soc 125:4951–4957
Falk M, Blum Z, Shleev S Electrochim Acta 82:191–202
Mano N, Mao F, Heller A (2003) J Am Chem Soc 125:6588–6594
Barrière F, Ferry Y, Rochefort D, Leech D (2004) Electrochem Commun 6:237–241
Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, Ruzgas T, Shleev S (2010) Fuel Cells 10:9–16
Wilson R, Turner APF (1992) Biosens Bioelectron 7:165–185
Coman V, Harreither W, Ludwig R, Haltrich D, Gorton L (2007) Chem Anal (Warsaw) 52:945–960
Martin Hallberg B, Henriksson G, Pettersson G, Divne C (2002) J Mol Biol 315:421–434
Hallberg BM, Bergfors T, Bäckbro K, Pettersson G, Henriksson G, Divne C (2000) Structure 8:79–88
Lindgren A, Larsson T, Ruzgas T, Gorton L (2000) J Electroanal Chem 494:105–113
Ludwig R, Harreither W, Tasca F, Gorton L (2010) ChemPhysChem 11:2674–2697
Katz E, Willner I, Kotlyar AB (1999) J Electroanal Chem 479:64–68
Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano K (2009) Energ Environ Sci 2:133–138
Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, Ludwig R, Bergelin M, Gorton L, Shleev S (2012) Biosens Bioelectron 31:219–225
Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz J-P, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S (2010) PLoS One 5:e10476
Seker E, Reed M, Begley M (2009) Mater 2:2188–2215
Erlebacher J (2004) J Electrochem Soc 151:C614–C626
Jenkins PA, Boland S, Kavanagh P, Leech D (2009) Bioelectrochem 76:162–168
Bergmeyer HU (1974) In: Bergmeyer HU, Gawehn K (eds) Methods of enzymatic analysis Vol I. Verlag Chemie, Weinheim, pp 494–495
Harreither W, Sygmund C, Augustiin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) App Environ Microbiol 77:1804–1815
Scanlon MD, Salaj-Kosla U, Belochapkine S, MacAodha D, Leech D, Ding Y, Magner E (2012) Langmuir 28:2251–2261
Barton SC, Kim H-H, Binyamin G, Zhang Y, Heller A (2001) J Phys Chem B 105:11917–11921
Mano N, Soukharev V, Heller A (2006) J Phys Chem B 110:11180–11187
Gregg BA, Heller A (1991) J Phys Chem 95:5970–5975
Stoica L, Ludwig R, Haltrich D, Gorton L (2005) Anal Chem 78(2):393–398
Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Bioelectrochem 67:15–22
Hale PD, Boguslavsky LI, Inagaki T, Karan HI, Lee HS, Skotheim TA, Okamoto Y (1991) Anal Chem 63:677–682
Safina G, Ludwig R, Gorton L (2010) Electrochim Acta 55:7690–7695
Boland S, Leech D (2012) Analyst 137:113–117
Willner I, Katz E, Patolsky F, Buckmann AF (1998) J Chem Soci 2:1817–1822
Acknowledgements
This work was supported by the European Union FP7 project, 3D-nanobiodevices (NMP4-SL-2009-229255) and the Programme for Third Level Institutions funded nanoscience programme, INSPIRE.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the topical collection Bioelectroanalysis with guest editors Nicolas Plumeré, Magdalena Gebala, and Wolfgang Schuhmann.
Rights and permissions
About this article
Cite this article
Salaj-Kosla, U., Scanlon, M.D., Baumeister, T. et al. Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes. Anal Bioanal Chem 405, 3823–3830 (2013). https://doi.org/10.1007/s00216-012-6657-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-012-6657-4
Keywords
- Nanoporous gold electrodes
- Mediated electron transfer
- Biosensor
- Bioanode
- Biofuel cell