Skip to main content
Log in

Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoporous and planar gold electrodes were utilised as supports for the redox enzymes Aspergillus niger glucose oxidase (GOx) and Corynascus thermophilus cellobiose dehydrogenase (CtCDH). Electrodes modified with hydrogels containing enzyme, Os-redox polymers and the cross-linking agent poly(ethylene glycol)diglycidyl ether were used as biosensors for the determination of glucose and lactose. Limits of detection of 6.0 (±0.4), 16.0 (±0.1) and 2.0 (±0.1) μM were obtained for CtCDH-modified lactose and glucose biosensors and GOx-modified glucose biosensors, respectively, at nanoporous gold electrodes. Biofuel cells composed of GOx- and CtCDH-modified gold electrodes were utilised as anodes, together with Myrothecium verrucaria bilirubin oxidase (MvBOD) or Melanocarpus albomyces laccase as cathodes, in biofuel cells. A maximum power density of 41 μW/cm2 was obtained for a CtCDH/MvBOD biofuel cell in 5 mM lactose and O2-saturated buffer (pH 7.4, 0.1 M phosphate, 150 mM NaCl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. Magner E (1998) Analyst 123:1967–1970

    Article  CAS  Google Scholar 

  2. Heller A (1992) J Phys Chem 96:3579–3587

    Article  CAS  Google Scholar 

  3. Hanefeld U, Gardossi L, Magner E (2009) Chem Soc Rev 38:453–468

    Article  CAS  Google Scholar 

  4. Ghindilis AL, Atanasov P, Wilkins E (1997) Electroanal 9:661–674

    Article  CAS  Google Scholar 

  5. Schuhmann W (2002) Rev Mol Biotech 82:425–441

    Article  CAS  Google Scholar 

  6. Frew JE, Hill HAO (1988) European J Biochem 172:261–269

    Article  CAS  Google Scholar 

  7. Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I (1999) Anal Chim Acta 400:91–108

    Article  CAS  Google Scholar 

  8. Habermüller K, Mosbach M, Schuhmann W (2000) J Anal Chem 366:560–568

    Article  Google Scholar 

  9. Christenson A, Dimcheva N, Ferapontova EE, Gorton L, Ruzgas T, Stoica L, Shleev S, Yaropolov AI, Haltrich D, Thorneley RNF, Aust SD (2004) Electroanal 16:1074–1092

    Article  CAS  Google Scholar 

  10. Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Anal Chem 56(4):667–671

    Article  CAS  Google Scholar 

  11. Battaglini F, Calvo EJ (1994) J Chem Soc 90:987–995

    CAS  Google Scholar 

  12. Valkiainen M, Tuurala S, Smolander M, Kaukoniemi O-V (2012) In: Steinberger-Wilckens R, Lehnert W (eds) Innovations in fuel cell technologies. RSC Publishing,

  13. Mano N, Mao F, Heller A (2002) J Am Chem Soc 124:12962–12963

    Article  CAS  Google Scholar 

  14. Mao F, Mano N, Heller A (2003) J Am Chem Soc 125:4951–4957

    Article  CAS  Google Scholar 

  15. Falk M, Blum Z, Shleev S Electrochim Acta 82:191–202

  16. Mano N, Mao F, Heller A (2003) J Am Chem Soc 125:6588–6594

    Article  CAS  Google Scholar 

  17. Barrière F, Ferry Y, Rochefort D, Leech D (2004) Electrochem Commun 6:237–241

    Article  Google Scholar 

  18. Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, Ruzgas T, Shleev S (2010) Fuel Cells 10:9–16

    CAS  Google Scholar 

  19. Wilson R, Turner APF (1992) Biosens Bioelectron 7:165–185

    Article  CAS  Google Scholar 

  20. Coman V, Harreither W, Ludwig R, Haltrich D, Gorton L (2007) Chem Anal (Warsaw) 52:945–960

    CAS  Google Scholar 

  21. Martin Hallberg B, Henriksson G, Pettersson G, Divne C (2002) J Mol Biol 315:421–434

    Article  CAS  Google Scholar 

  22. Hallberg BM, Bergfors T, Bäckbro K, Pettersson G, Henriksson G, Divne C (2000) Structure 8:79–88

    Article  CAS  Google Scholar 

  23. Lindgren A, Larsson T, Ruzgas T, Gorton L (2000) J Electroanal Chem 494:105–113

    Article  CAS  Google Scholar 

  24. Ludwig R, Harreither W, Tasca F, Gorton L (2010) ChemPhysChem 11:2674–2697

    Article  CAS  Google Scholar 

  25. Katz E, Willner I, Kotlyar AB (1999) J Electroanal Chem 479:64–68

    Article  CAS  Google Scholar 

  26. Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano K (2009) Energ Environ Sci 2:133–138

    Article  CAS  Google Scholar 

  27. Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, Ludwig R, Bergelin M, Gorton L, Shleev S (2012) Biosens Bioelectron 31:219–225

    Article  Google Scholar 

  28. Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz J-P, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S (2010) PLoS One 5:e10476

    Article  Google Scholar 

  29. Seker E, Reed M, Begley M (2009) Mater 2:2188–2215

    Article  CAS  Google Scholar 

  30. Erlebacher J (2004) J Electrochem Soc 151:C614–C626

    Article  CAS  Google Scholar 

  31. Jenkins PA, Boland S, Kavanagh P, Leech D (2009) Bioelectrochem 76:162–168

    Article  CAS  Google Scholar 

  32. Bergmeyer HU (1974) In: Bergmeyer HU, Gawehn K (eds) Methods of enzymatic analysis Vol I. Verlag Chemie, Weinheim, pp 494–495

    Google Scholar 

  33. Harreither W, Sygmund C, Augustiin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) App Environ Microbiol 77:1804–1815

    Article  CAS  Google Scholar 

  34. Scanlon MD, Salaj-Kosla U, Belochapkine S, MacAodha D, Leech D, Ding Y, Magner E (2012) Langmuir 28:2251–2261

    Article  CAS  Google Scholar 

  35. Barton SC, Kim H-H, Binyamin G, Zhang Y, Heller A (2001) J Phys Chem B 105:11917–11921

    Article  CAS  Google Scholar 

  36. Mano N, Soukharev V, Heller A (2006) J Phys Chem B 110:11180–11187

    Article  CAS  Google Scholar 

  37. Gregg BA, Heller A (1991) J Phys Chem 95:5970–5975

    Article  CAS  Google Scholar 

  38. Stoica L, Ludwig R, Haltrich D, Gorton L (2005) Anal Chem 78(2):393–398

    Article  Google Scholar 

  39. Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Bioelectrochem 67:15–22

    Article  CAS  Google Scholar 

  40. Hale PD, Boguslavsky LI, Inagaki T, Karan HI, Lee HS, Skotheim TA, Okamoto Y (1991) Anal Chem 63:677–682

    Article  CAS  Google Scholar 

  41. Safina G, Ludwig R, Gorton L (2010) Electrochim Acta 55:7690–7695

    Article  CAS  Google Scholar 

  42. Boland S, Leech D (2012) Analyst 137:113–117

    Article  CAS  Google Scholar 

  43. Willner I, Katz E, Patolsky F, Buckmann AF (1998) J Chem Soci 2:1817–1822

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union FP7 project, 3D-nanobiodevices (NMP4-SL-2009-229255) and the Programme for Third Level Institutions funded nanoscience programme, INSPIRE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond Magner.

Additional information

Published in the topical collection Bioelectroanalysis with guest editors Nicolas Plumeré, Magdalena Gebala, and Wolfgang Schuhmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salaj-Kosla, U., Scanlon, M.D., Baumeister, T. et al. Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes. Anal Bioanal Chem 405, 3823–3830 (2013). https://doi.org/10.1007/s00216-012-6657-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6657-4

Keywords

Navigation