Skip to main content

Honey protein extraction and determination by mass spectrometry

Abstract

There are relatively limited studies on the protein of honey samples mainly because of the low amount of protein in honey (0.1–0.5 %), the difficulty in extracting honey protein from the sugar-rich environment, and the hindrance of protein characterization by conventional approaches. Several protein extraction methods such as mechanical (ultrafiltration and ultracentrifugation) and chemical (precipitation) techniques have been applied to different types of honey samples. Most of these studies reported the quantity and molecular size of honey protein from gel electrophoresis, but were unable to identify and characterize the protein. This limitation might be due to the low capacity of analytical equipment in those days. Although different precipitants have also been used, not all them are compatible with mass spectrometric methods during downstream analysis. As a result, the sample preparation step is essential in order to confidently characterize the low and varied amount of honey protein. Nowadays, honey protein is getting attention from researchers because of its potential activity in pharmacological applications. Therefore, honey protein extraction and determination by mass spectrometry are critically reviewed in order to stimulate further honey protein research.

Flow of protein extraction and identification from honey samples

This is a preview of subscription content, access via your institution.

References

  1. 1.

    White JW (1957) Bee World 38:57–66

    CAS  Google Scholar 

  2. 2.

    Marshall T, Williams KM (1987) Anal Biochem 167:301–303

    CAS  Article  Google Scholar 

  3. 3.

    Girolamo FD, D’Amato A, Righetti PG (2012) J Proteomics 75:3688–3693

    Article  CAS  Google Scholar 

  4. 4.

    Ferreres F, Garcia-Viguera C, Tomas-Lorento F, Tomas-Barberan FA (1993) J Sci Food Agric 61:121–123

    CAS  Article  Google Scholar 

  5. 5.

    Bauer L, Kohlich A, Hirschwehr R, Siemann U, Ebner H, Scheiner O, Kraft D, Ebner C (1996) J Allergy Clin Immunol 97:65–73

    CAS  Article  Google Scholar 

  6. 6.

    Lee DC, Lee SY, Cha SH, Choi YS, Rhee HI (1998) Korean J Food Sci 30:1–5

    Google Scholar 

  7. 7.

    Won SR, Lee DC, Ko SH, Kim JW, Rhee HI (2008) Food Res Int 41:952–956

    CAS  Article  Google Scholar 

  8. 8.

    Simuth J, Bilikova K, Kovacova E, Kuzmova Z, Schroder W (2004) J Agric Food Chem 52:2154–2158

    CAS  Article  Google Scholar 

  9. 9.

    Thomas R (2001) Spectroscopy 16:28–37

    CAS  Google Scholar 

  10. 10.

    Ji QC, Rodila R, El-Shourbagy TA (2007) J Chromatogr B 847:133–141

    CAS  Article  Google Scholar 

  11. 11.

    Jagdish T, Joseph I (2004) J Agric Food Chem 52:3237–3243

    Article  CAS  Google Scholar 

  12. 12.

    Yilmaz H, Kufrevloglu OI (2003) GIDA 28:155–157

    Google Scholar 

  13. 13.

    White JW, Kushnir I (1967) J Apicult Res 6:163–178

    CAS  Google Scholar 

  14. 14.

    White JW, Rudyj ON (1978) J Apicult Res 17:234–238

    CAS  Google Scholar 

  15. 15.

    White JW, Winters K (1989) J Assoc Off Anal Chem 72:907–911

    CAS  Google Scholar 

  16. 16.

    White JW (1992) J Assoc Off Anal Chem 75:543–548

    CAS  Google Scholar 

  17. 17.

    Cienfuegos E, Casar I, Morales P (1997) J Apicult Res 36:169–179

    CAS  Google Scholar 

  18. 18.

    Association of Official Analytical Chemists (1990) AOAC official method 991.41. Official methods of analysis, 15th edn. AOAC, Washington DC

  19. 19.

    Korth W, Ralston J (2002) Techniques for the detection of adulterated honey, Rural Industries Research and Development Corporation. Barton, Australia

    Google Scholar 

  20. 20.

    Gonzalez Paramas AM, Gomez Barez JA, Marcos CC, Garcia-Villanova RJ, Sanchez JS (2006) Food Chem 95:148–156

    Article  CAS  Google Scholar 

  21. 21.

    Rebane R, Herodes K (2008) J Agric Food Chem 56:10716–10720

    CAS  Article  Google Scholar 

  22. 22.

    Iglesias MT, Lorenzo CD, Polo MDC, Martin-Alvarez PJ, Pueyo E (2004) J Agric Food Chem 52:84–89

    CAS  Article  Google Scholar 

  23. 23.

    Anklam EA (1998) Food Chem 63:549–562

    CAS  Article  Google Scholar 

  24. 24.

    von der Ohe W, Dustmann JH, von der Ohe K (1991) Dtsch Lebensm Rundsch 87:383–386

    Google Scholar 

  25. 25.

    Cometto PM, Faye PF, Naranjo RD, Rubio MA, Aldao MAJ (2003) J Agric Food Chem 51:5079–5087

    CAS  Article  Google Scholar 

  26. 26.

    Hermosin I, Chicon RM, Cabezudo MD (2003) Food Chem 83:263–268

    CAS  Article  Google Scholar 

  27. 27.

    Nozal MJ, Bernal JL, Toribio ML, Diego JC, Ruiz A (2004) J Chromatogr A 1047:137–146

    CAS  Article  Google Scholar 

  28. 28.

    Cotte JF, Casabianca H, Giroud B, Albert M, Lheritier J, Grenier-Loustalot MF (2004) Anal Bioanal Chem 378:1342–1350

    CAS  Article  Google Scholar 

  29. 29.

    Berlitz HD, Grosch W, Schieberle P (2009) Food chemistry, 4th edn. Springer, Leipzig

    Google Scholar 

  30. 30.

    Baroni MV, Chiabrando GA, Costa C, Wunderlin DA (2002) J Agric Food Chem 50:1362–1367

    CAS  Article  Google Scholar 

  31. 31.

    Peiren N, de Graaf DC, Vanrobaeys F, Danneels EL, Devreese B, Beeumen JV, Jacobs FJ (2008) Toxicon 52:72–83

    CAS  Article  Google Scholar 

  32. 32.

    Babacan S, Rand AG (2005) J Food Sci 70:C413–C418

    CAS  Article  Google Scholar 

  33. 33.

    Vit P, Pulcini P (1996) J Apicult Res 35:57–62

    CAS  Google Scholar 

  34. 34.

    Pontoh J, Low NH (2002) Insect Biochem Mol Biol 32:679–690

    CAS  Article  Google Scholar 

  35. 35.

    White JW, Kushnir I (1967) J Apicult Res 6:69–89

    Google Scholar 

  36. 36.

    Schepartz AI, Subers MH (1964) Biochim Biophys Acta 85:228–237

    CAS  Google Scholar 

  37. 37.

    White JW, Kushnir I (1966) Anal Biochem 16:302–313

    CAS  Article  Google Scholar 

  38. 38.

    Jintanart W, Takeshi Y, Hiroyuki N, Kim YM, Natsuko S, Mamoru N, Okuyama M, Mori H, Saji O, Chanchao C, Wongsiri S, Surarit R, Svasti J, Chiba S, Kimura A (2006) Biosci Biotechnol Biochem 70:2889–2898

    Article  CAS  Google Scholar 

  39. 39.

    Huber RE, Mathison RD (1976) Can J Biochem 54(1976):153–164

    CAS  Google Scholar 

  40. 40.

    Cho NC (1994) Korean Biochem J 27:509–513

    CAS  Google Scholar 

  41. 41.

    Ohashi K, Natori S, Kubo T (1999) Eur J Biochem 265:127–133

    CAS  Article  Google Scholar 

  42. 42.

    Sporns P (1992) In: Hui YH (ed) Encyclopedia of food science and technology, vol 2. Wiley, New York

    Google Scholar 

  43. 43.

    White JW (1978) Adv Food Res 24:287–364

    CAS  Article  Google Scholar 

  44. 44.

    White JW (1975) In: Crane E (ed) Honey: a comprehensive study. Heinemann, London

    Google Scholar 

  45. 45.

    Rinaudo MT, Ponzetto C, Vidano C, Marletto F (1973) Comp Biochem Physiol 46B:253–256

    Google Scholar 

  46. 46.

    Fujita T, Kozuka-Hata H, Uno Y, Nishikori K, Morioka M, Oyama M, Kubo T (2010) Biochem Biophys Res Comm 397:740–744

    CAS  Article  Google Scholar 

  47. 47.

    Won SR, Li CY, Kim JW, Rhee HI (2009) Food Chem 113:1334–1338

    CAS  Article  Google Scholar 

  48. 48.

    Callesen AK, Madsen JS, Vach W, Kruse TA, Mogensen O, Jensen ON (2009) Proteomics 9:1428–1441

    CAS  Article  Google Scholar 

  49. 49.

    Reiz B, Li L (2010) J Am Soc Mass Spectrom 21:1596–1605

    CAS  Article  Google Scholar 

  50. 50.

    Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN (2007) Mass Spectrom Rev 26:657–671

    CAS  Article  Google Scholar 

  51. 51.

    Afiuni-Zadeh S, Guo X, Gholamhassan A, Lankmayr E (2011) Talanta 85:1835–1841

    CAS  Article  Google Scholar 

  52. 52.

    Xue YJ, Liu J, Pursley J, Unger S (2006) J Chromatogr B 831:213–222

    CAS  Article  Google Scholar 

  53. 53.

    Mitchell TJ, Irvine L, Scoular RHM (1955) Analyst 80:620–622

    CAS  Article  Google Scholar 

  54. 54.

    Nelson JM, Cohn DJ (1924) J Biol Chem 61:193–224

    CAS  Google Scholar 

  55. 55.

    Papadakis PE (1929) J Biol Chem 83:561–568

    CAS  Google Scholar 

  56. 56.

    Padovan GJ, Rodrigues LP, Leme IA, Jong DD, Marchini JS (2007) Eurasian J Anal Chem 2:134–141

    CAS  Google Scholar 

  57. 57.

    AOAC (2010) Official method 998.12. Official methods of analysis. Association of Official Analytical Chemists, Washington DC

  58. 58.

    Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R (2003) J Chromatogr B 785:263–275

    CAS  Article  Google Scholar 

  59. 59.

    Kong FJ, Oyanagi A, Komatsu S (2010) Biochim Biophys Acta 1804:124–136

    CAS  Article  Google Scholar 

  60. 60.

    Li J, Fang Y, Zhang L, Begna D (2011) J Insect Physiol 57:372–384

    CAS  Article  Google Scholar 

  61. 61.

    Steinhorn G, Sims IM, Carnachan SM, Carr AJ, Schlothauer R (2011) Food Chem 128:949–956

    CAS  Article  Google Scholar 

  62. 62.

    Kubota M, Tsuji M, Nishimoto M, Wongchawalit J, Okuyama M, Mori H, Matsui H, Surarit R, Svasti J, Kimura A, Chiba S (2004) Biosci Biotechnol Biochem 68:2346–2352

    CAS  Article  Google Scholar 

  63. 63.

    Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Plant Sci 176:99–104

    CAS  Article  Google Scholar 

  64. 64.

    Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Proteomics 5:2497–2507

    CAS  Article  Google Scholar 

  65. 65.

    Jermyn MA, Yeow YM (1975) Aust J Plant Physiol 2:501–531

    CAS  Article  Google Scholar 

  66. 66.

    van Holst GJ, Clarke AE (1985) Anal Biochem 148:446–450

    Article  Google Scholar 

  67. 67.

    Gane AM, Craik D, Munro SLA, Hoelett GJ, Clarke AE, Bacic A (1995) Carbohydr Res 277:67–85

    CAS  Article  Google Scholar 

  68. 68.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  69. 69.

    Herriott RM (1941) Proc Soc Exp Biol Med 46:642–644

    CAS  Google Scholar 

  70. 70.

    Wu H (1920) J Biol Chem 43:189–220

    CAS  Google Scholar 

  71. 71.

    da C Azeredo L, Azeredo MAA, de Souza SR, Dutra VML (2003) Food Chem 80:249–254

    Google Scholar 

  72. 72.

    Neurath AR (1966) Experientia 22:290

    CAS  Article  Google Scholar 

  73. 73.

    Kuno H, Kihara HK (1967) Nature 215:974–975

    CAS  Article  Google Scholar 

  74. 74.

    Vallejo CG, Lagunas R (1970) Anal Biochem 138:141–143

    Google Scholar 

  75. 75.

    Lo C, Stelson H (1972) Anal Biochem 45:331–336

    CAS  Article  Google Scholar 

  76. 76.

    Wessel D, Flugge UI (1984) Anal Biochem 138:141–143

    CAS  Article  Google Scholar 

  77. 77.

    Makkar HPS, Sharma OP, Negi SS (1980) Anal Biochem 104:124–126

    CAS  Article  Google Scholar 

  78. 78.

    Horikawa S, Ogawara H (1979) Anal Biochem 97:116–119

    CAS  Article  Google Scholar 

  79. 79.

    Rauh M (2012) J Chromatogr B 883–884:59–67

    Article  CAS  Google Scholar 

  80. 80.

    Sundqvist G, Stenvall M, Berglund H, Ottosson J, Brumer H (2007) J Chromatogr B 852:188–194

    CAS  Article  Google Scholar 

  81. 81.

    Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Electrophoresis 20:601–605

    CAS  Article  Google Scholar 

  82. 82.

    Matros A, Kaspar S, Witzel K, Mock HP (2011) Phytochem 72:963–974

    CAS  Article  Google Scholar 

  83. 83.

    Yeung YG, Nieves E, Angeletti RH, Stanley ER (2008) Anal Biochem 382:135–137

    CAS  Article  Google Scholar 

  84. 84.

    Norris JL, Porter NA, Caprioli RM (2003) Anal Biochem 75:6642–6647

    CAS  Google Scholar 

  85. 85.

    Chen EI, McClatchy D, Park SK, Yates JR III (2008) Anal Biochem 80:8694–8701

    CAS  Google Scholar 

  86. 86.

    Perkins PD, Fischer SM (2008) Peptide derivatization method to increase fragmentation information from MS/MS spectra. US Patent Application US 2008/0026479

  87. 87.

    Delahunty C, Yates JR III (2005) Methods 35:248–255

    CAS  Article  Google Scholar 

  88. 88.

    Arsene CG, Ohlendorf R, Burkitt W, Pritchard C, Henrion A, O’Connor G, Bunk DM, Guttler B (2008) Anal Biochem 80:4154–4160

    CAS  Google Scholar 

  89. 89.

    Agger SA, Marney LC, Hoofnagie AN (2010) Clin Chem 56:1804–1813

    CAS  Article  Google Scholar 

  90. 90.

    Proc JL, Kuzyk MA, Hardie DB, Yang J, Smith DS, Jackson AM, Parker CE, Borchers CH (2010) J Proteome Res 9:5422–5437

    CAS  Article  Google Scholar 

  91. 91.

    Matysiak J, Schmelzer CEH, Neubert RHH, Kokot ZJ (2011) J Pharm Biomed Anal 54:273–278

    CAS  Article  Google Scholar 

  92. 92.

    Ren D, Ratnaswamy G, Beierle J, Treuheit MJ, Brems DN, Bondarenko PV (2009) Int J Biol Macromol 44:81–85

    CAS  Article  Google Scholar 

  93. 93.

    Peiren N, Vanrobaeys F, de Graaf DC, Devreese B, Beeumen JV, Jacobs FJ (2005) Biochim Biophys Acta 1752:1–5

    CAS  Article  Google Scholar 

  94. 94.

    Fang CY, Chen HY, Wang M, Chen PL, Chang CF, Chen LS, Shen CH, Ou WC, Tsai MD, Hsu PH, Chang D (2010) Virol 402:164–176

    CAS  Article  Google Scholar 

  95. 95.

    Johnson D, Orlando R (2011) J Biomol Tech 22(Suppl):S57–S58

    Google Scholar 

  96. 96.

    Wu R, Hu L, Wang F, Ye M, Zou H (2008) J Chromatogr 1184:369–392

    CAS  Article  Google Scholar 

  97. 97.

    Tanaka N, Kimura H, Tokuda D, Hosoya K, Ikegami T, Ishizuka N, Minakuchi H, Nakanishi K, Shintani Y, Furuno M, Cabrera K (2004) Anal Biochem 76:1273–1281

    CAS  Google Scholar 

  98. 98.

    Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR (2002) Anal Chem 74:1650–1657

    CAS  Article  Google Scholar 

  99. 99.

    Wolters DA, Washburn MP, Yates JR (2001) Anal Chem 73:5683–5690

    CAS  Article  Google Scholar 

  100. 100.

    Link AJ, Eng J, Schirltz DM, Carmack E, Mize GJ, Morris DR, Garvick BM, Yates JR III (1999) Nat Biotechnol 17:676–682

    CAS  Article  Google Scholar 

  101. 101.

    Gilar M, Olivova P, Daly AE, Gebler JC (2005) J Sep Sci 28:1694–1703

    CAS  Article  Google Scholar 

  102. 102.

    Scevchenko A (1996) Proc Natl Acad Sci 93:14440–14445

    Article  Google Scholar 

  103. 103.

    Alomirah HF, Alli I, Konishi Y (2000) J Chromatogr A 893:1–21

    CAS  Article  Google Scholar 

  104. 104.

    Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L (2004) J Chromatogr B 803:3–16

    CAS  Article  Google Scholar 

  105. 105.

    John H, Walden M, Schafer S, Genz S, Forssmann WG (2004) Anal Bioanal Chem 378:883–897

    CAS  Article  Google Scholar 

  106. 106.

    Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Mol Cell Proteomics 6:1868–1884

    CAS  Article  Google Scholar 

  107. 107.

    Bachi A, Bonaldi T (2008) J Proteomics 71:357–367

    CAS  Article  Google Scholar 

  108. 108.

    Wilm M (2009) Proteomics 9:4590–4605

    CAS  Article  Google Scholar 

  109. 109.

    Schmelzer CE, Schops R, Ulbrich-Hofmann R, Neubert RH, Raith K (2004) J Chromatogr A 1055:87–92

    CAS  Article  Google Scholar 

  110. 110.

    Tang K, Allman SL, Jones RB, Chen CH (1993) Anal Chem 65:2164–2166

    CAS  Article  Google Scholar 

  111. 111.

    Gonnet F, Lemaitre G, Waksman G, Tortajada J (2003) Proteome Sci 1:1–7

    Article  Google Scholar 

  112. 112.

    Karas M, Kruger R (2003) Chem Rev 103:427–440

    CAS  Article  Google Scholar 

  113. 113.

    Francese S, Lambardi D, Mastrobuoni G, la Marca G, Moneti G, Turillazzi S (2009) J Am Soc Mass Spectrom 20:112–123

    CAS  Article  Google Scholar 

  114. 114.

    Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto JL, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Nat Biotechnol 27:633–641

    CAS  Article  Google Scholar 

  115. 115.

    Blonder J, Conrads TP, Veenstra TD (2004) Expert Rev Proteomics 1:153–163

    CAS  Article  Google Scholar 

  116. 116.

    Blonder J, Chan KC, Issaq HJ, Veenstra TD (2006) Nat Protoc 1:2784–2790

    CAS  Article  Google Scholar 

  117. 117.

    Fortin T, Salvador A, Charrier JP, Lenz C, Bettsworth F, Lacoux X, Choquet-Kastylevsky G, Lemoine J (2009) Anal Chem 81:9343–9352

    CAS  Article  Google Scholar 

  118. 118.

    Keller A, Nesvizhskii AI, Kolker E, Abersold R (2002) Anal Chem 74:5383–5392

    CAS  Article  Google Scholar 

  119. 119.

    Nesvizhskii AI, Keller A, Kolker E, Abersold R (2003) Anal Chem 75:4646–4658

    CAS  Article  Google Scholar 

  120. 120.

    Cottrell JS (2011) J Proteomics 74:1842–1851

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lee Suan Chua.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chua, L.S., Lee, J.Y. & Chan, G.F. Honey protein extraction and determination by mass spectrometry. Anal Bioanal Chem 405, 3063–3074 (2013). https://doi.org/10.1007/s00216-012-6630-2

Download citation

Keywords

  • Honey protein
  • Protein extraction
  • Mass spectrometry
  • Database search