Skip to main content

Advertisement

Log in

Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sample autofluorescence (fluorescence of inherent components of tissue and fixative-induced fluorescence) is a significant problem in direct imaging of molecular processes in biological samples. A large variety of naturally occurring fluorescent components in tissue results in broad emission that overlaps the emission of typical fluorescent dyes used for tissue labeling. In addition, autofluorescence is characterized by complex fluorescence intensity decay composed of multiple components whose lifetimes range from sub-nanoseconds to a few nanoseconds. For these reasons, the real fluorescence signal of the probe is difficult to separate from the unwanted autofluorescence. Here we present a method for reducing the autofluorescence problem by utilizing an azadioxatriangulenium (ADOTA) dye with a fluorescence lifetime of approximately 15 ns, much longer than those of most of the components of autofluorescence. A probe with such a long lifetime enables us to use time-gated intensity imaging to separate the signal of the targeting dye from the autofluorescence. We have shown experimentally that by discarding photons detected within the first 20 ns of the excitation pulse, the signal-to-background ratio is improved fivefold. This time-gating eliminates over 96 % of autofluorescence. Analysis using a variable time-gate may enable quantitative determination of the bound probe without the contributions from the background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghisla S, Massey V, Lhoste J, Mayhew S Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry 13(3):589–597

  2. Croce AC, Spano A, Locatelli D, Barni S, Sciola L, Bottiroli G (1999) Dependence of fibroblast autofluorescence properties on normal and transform conditions. Role of the metabolic activity. Photochem Photobiol 69:364–374

    Article  CAS  Google Scholar 

  3. Haralampus-Grynaviski NM, Lamb LE, Clancy CM, Skumatz C, Burke JM, Sarna T, Simon JD (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci U S A 100:3179–3184

    Article  CAS  Google Scholar 

  4. Doyle KP, Simon RP, Snyder A, Stenzel-Poore MP (2003) Working with GFP in the brain. Biotechniques 34:492–494

    CAS  Google Scholar 

  5. König K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8:432–439

    Article  Google Scholar 

  6. Richards-Kortum R, Drezek R, Sokolov K, Pavlova I, Follen M (2003) Survey of endogenous biological fluorophores. In: Mycek MA, Pogue BW (eds) Handbook of biomedical fluorescence. Marcel Dekker Inc, New York, pp 237–264

    Google Scholar 

  7. Schweitzer D, Schenke S, Hammer M, Schweitzer F, Jentsch S, Birckner E, Becker W (2007) Towards metabolic mapping of the human retina. Microsc Res Tech 70:403–409

    Article  Google Scholar 

  8. Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730

    Article  CAS  Google Scholar 

  9. Clancy B, Cauller LJ (1998) Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J Neurosci Methods 83:97–102

    Article  CAS  Google Scholar 

  10. Cowen T, Haven AJ, Burnstock G (1985) Pontamine Sky Blue: a counterstain for background autofluorescence in fluorescence and immunofluorescence histochemistry. Histochemistry 82:205–208

    Article  CAS  Google Scholar 

  11. Steinkamp JA, Stewart CC (1986) Dual-laser, differential fluorescence correction method for reducing cellular background autofluorescence. Cytometry 7:566–574

    Article  CAS  Google Scholar 

  12. Van de Lest CH, Versteeg EM, Veerkamp JH, Van Kuppevelt TH (1995) Elimination of autofluorescence in immunofluorescence microscopy with digital image processing. J Histochem Cytochem 43:727–730

    Article  Google Scholar 

  13. Beeby A, Botchway SW, Clarkson IM, Faulkner S, Parker AW, Parker D, Williams JAG (2000) Luminescence imaging microscopy and lifetime mapping using kinetically stable lanthanide(III) complexes. 57(2):83–89

  14. Frangioni JV (2009) The problem is background, not signal. Mol Imaging 8(6):303–304

    Google Scholar 

  15. Mathejczyk JE, Pauli J, Dullin C, Napp J, Tietze LF, Kessler H, Resch-Genger U, Alves F (2011) Spectroscopically well-characterized RGD optical probe as a prerequisite for lifetime-gated tumor imaging. Mol Imaging 10(6):469–480

    CAS  Google Scholar 

  16. Jin D, Piper JA (2011) Time-gated luminescence microscopy allowing direct visual inspection of lanthanide-stained microorganisms in background-free condition. Anal Chem 83(6):2294–2300

    Article  CAS  Google Scholar 

  17. Laursen BW, Sørensen TJ (2009) Synthesis of super stable triangulenium dye. J Org Chem 74(8):3183–3185

    Article  CAS  Google Scholar 

  18. Sørensen TJ, Laursen BW, Luchowski R, Shtoyko T, Akopova I, Gryczynski Z, Gryczynski I (2009) Enhanced fluorescence emission of Me-ADOTA by self-assembled silver nanoparticles on a gold film. Chem Phys Lett 476(1):46–50

    Article  Google Scholar 

  19. Folmar M, Shtoyko T, Fudala R, Akopova I, Gryczynski Z, Raut S, Gryczynski I (2012) Metal enhanced fluorescence of Me-ADOTA•Cl dye by silver triangular nanoprisms on a gold film. Chem Phys Lett 531:126–131

    Article  CAS  Google Scholar 

  20. Martin JC, Smith RG (1964) Factors influencing the basicities of triarylcarbinols. The synthesis of sesquixanthydrol. J Am Chem Soc 86:2252–2256

    Article  CAS  Google Scholar 

  21. Laursen BW, Krebs FC (2000) Synthesis of a triazatriangulenium salt. Angew Chem Int Ed Engl 39(19):3432–3434

    Article  CAS  Google Scholar 

  22. Laursen BW, Krebs FC (2001) Synthesis, structure, and properties of azatriangulenlenium salts. Chemistry 7(8):1773–1783

    Article  CAS  Google Scholar 

  23. Reynisson J, Wilbrandt R, Brinck V, Laursen BW, Nørgaard K, Harrit N, Brouwer AM (2002) Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state. Photochem Photobiol Sci 1(10):763–773

    Article  CAS  Google Scholar 

  24. Dileesh S, Gopidas KR (2000) Photophysical and electron transfer studies of a stable carbocation. Chem Phys Lett 330:397–402

    Article  CAS  Google Scholar 

  25. Hammershøj P, Sørensen TJ, Han BH, Laursen BW (2012) Base-assisted one-pot synthesis of N, N′, N″-triaryltriazatriangulenium dyes: enhanced fluorescence efficiency by steric constraints. J Org Chem 77(13):5606–5612

    Article  Google Scholar 

  26. Lakowicz JR, Gryczynski I, Gryczynski Z, Johnson ML (2000) Background suppression in frequency-domain fluorimetry. Anal Biochem 277:74–85

    Article  CAS  Google Scholar 

  27. http://www.who.int/blindness/causes/priority/en/index7.html

  28. Sillen A, Engelborghs Y (1998) The correct use of “average fluorescence parameters”. Photochem Photobiol 67(5):475–486

    CAS  Google Scholar 

  29. Ogawa M, Kosaka N, Choyke PL, Kobayashi H (2009) H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. ACS Chem Biol 4:535–546

    Article  CAS  Google Scholar 

  30. Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279(3):C541–C566

    CAS  Google Scholar 

  31. Al-Khalili L, Kotova O, Tsuchida H, Ehrén I, Féraille E, Krook A, Chibalin AV (2004) ERK1/2 mediates insulin stimulation of Na(+), K(+)-ATPase by phosphorylation of the alpha-subunit in human skeletal muscle cells. J Biol Chem 279(24):25211–25218

    Article  CAS  Google Scholar 

  32. Tian J, Cai T, Yuan Z, Wang H, Liu L, Haas M, Maksimova E, Huang XY, Xie ZJ (2006) Binding of Src to Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell 1:317–326

    Google Scholar 

  33. Liang M, Cai T, Tian J, Qu W, Xie ZJ (2006) Functional characterization of Src-interacting Na/K-ATPase using RNA interference assay. J Biol Chem 281(28):19709–19719

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01EB12003 (Z.G.) and 1RO1HL090786-01A2 (J.B.) and the Danish Council for Independent Research, Technology, and Production Sciences grant 10-093546 (T.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ignacy Gryczynski or Rafal Fudala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rich, R.M., Stankowska, D.L., Maliwal, B.P. et al. Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore. Anal Bioanal Chem 405, 2065–2075 (2013). https://doi.org/10.1007/s00216-012-6623-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6623-1

Keywords

Navigation