Analytical and Bioanalytical Chemistry

, Volume 405, Issue 9, pp 2799–2814 | Cite as

Ensuring the reliability of stable isotope ratio data—beyond the principle of identical treatment

  • J. F. Carter
  • B. Fry


The need for inter-laboratory comparability is crucial to facilitate the globalisation of scientific networks and the development of international databases to support scientific and criminal investigations. This article considers what lessons can be learned from a series of inter-laboratory comparison exercises organised by the Forensic Isotope Ratio Mass Spectrometry (FIRMS) network in terms of reference materials (RMs), the management of data quality, and technical limitations. The results showed that within-laboratory precision (repeatability) was generally good but between-laboratory accuracy (reproducibility) called for improvements. This review considers how stable isotope laboratories can establish a system of quality control (QC) and quality assurance (QA), emphasising issues of repeatability and reproducibility. For results to be comparable between laboratories, measurements must be traceable to the international δ-scales and, because isotope ratio measurements are reported relative to standards, a key aspect is the correct selection, calibration, and use of international and in-house RMs. The authors identify four principles which promote good laboratory practice. The principle of identical treatment by which samples and RMs are processed in an identical manner and which incorporates three further principles; the principle of identical correction (by which necessary corrections are identified and evenly applied), the principle of identical scaling (by which data are shifted and stretched to the international δ-scales), and the principle of error detection by which QC and QA results are monitored and acted upon. To achieve both good repeatability and good reproducibility it is essential to obtain RMs with internationally agreed δ-values. These RMs will act as the basis for QC and can be used to calibrate further in-house QC RMs tailored to the activities of specific laboratories. In-house QA standards must also be developed to ensure that QC-based calibrations and corrections lead to accurate results for samples. The δ-values assigned to RMs must be recorded and reported with all data. Reference materials must be used to determine what corrections are necessary for measured data. Each analytical sequence of samples must include both QC and QA materials which are subject to identical treatment during measurement and data processing. Results for these materials must be plotted, monitored, and acted upon. Periodically international RMs should be analysed as an in-house proficiency test to demonstrate results are accurate.


Stable isotope ratio measurements Isotope-ratio mass spectrometry Reference materials Principle of identical treatment Quality assurance Quality control 


  1. 1.
    Thompson M (2012) Precision in chemical analysis: a critical survey of uses and abuses. Anal Meth 4:1598–1611. doi: 10.1039/c2ay25083g CrossRefGoogle Scholar
  2. 2.
    Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25(17):2538–2560. doi: 10.1002/rcm.5129 Google Scholar
  3. 3.
    Brand WA (2011) New reporting guidelines for stable isotopes – an announcement to isotope users. Isotopes Environ Health Stud 47(4):535–536. doi: 10.1080/10256016.2011.645702 CrossRefGoogle Scholar
  4. 4.
    Coplen TB, Qi H (2012) USGS42 and USGS43: Human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results. Forensic Sci Int 214(1–3):135–141. doi: 10.1016/j.forsciint.2011.07.035 CrossRefGoogle Scholar
  5. 5.
    Schimmelmann A, Albertino A, Sauer PE, Qi H, Molinie R, Mesnard F (2009) Nicotine, acetanilide and urea multi-level 2H, 13C and 15N abundance reference materials for continuous-flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 23(22):3513–3521. doi: 10.1002/rcm.4277 CrossRefGoogle Scholar
  6. 6.
    Hagopian WM, Jahren AH (2012) Elimination of nitrogen interference during online oxygen isotope analysis of nitrogen-doped organics using the “NiCat” nickel reduction system. Rapid Commun Mass Spectrom 26(16):1776–1782. doi: 10.1002/rcm.6285 CrossRefGoogle Scholar
  7. 7.
    Qi H, Coplen TB, Wassenaar LI (2011) Improved online δ18O measurements of nitrogen- and sulfur-bearing organic materials and a proposed analytical protocol. Rapid Commun Mass Spectrom 25(14):2049–2058. doi: 10.1002/rcm.5088 CrossRefGoogle Scholar
  8. 8.
    Coplen TA, Qi H (2009) Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples. Isotopes Environ Health Stud 45(2):126–134. doi: 10.1080/10256010902871952 CrossRefGoogle Scholar
  9. 9.
    Carter JF, Hill JC, Doyle S, Lock C (2009) Results of four inter-laboratory comparisons provided by the Forensic Isotope Ratio Mass Spectrometry (FIRMS) network. Sci Justice 49(2):127–137. doi: 10.1016/j.scijus.2008.12.002 CrossRefGoogle Scholar
  10. 10.
    Carter JF, Barwick VJ (eds) (2012) Good practice guide for isotope ratio mass spectrometry. LGC/FIRMS, ISBN 978-0-948926-31-0Google Scholar
  11. 11.
    Kornexl BE, Gehre M, Höfling R, Werner RA (1999) On-line δ 18O measurement of organic and inorganic substances. Rapid Commun Mass Spectrom 13:1685–1693. doi:10.1002/(SICI)1097-0231(19990830)13:16<1685::AID-RCM6991>3.0.CO;2-9CrossRefGoogle Scholar
  12. 12.
    David GE, Coxon A, Frewa RD, Hayman AR (2010) Isotope fractionation during precipitation of methamphetamine HCl and discrimination of seized forensic samples. Forensic Sci Int 200(1–3):123–129. doi: j.forsciint.2010.03.043 CrossRefGoogle Scholar
  13. 13.
    Qi H, Coplen TB (2011) Investigation of preparation techniques for δ2H analysis of keratin materials and a proposed analytical protocol. Rapid Commun Mass Spectrom 25(15):2209–2222. doi: 10.1002/rcm.5095 CrossRefGoogle Scholar
  14. 14.
    Coplen TB, Kendall C, Hopple JA (1983) Comparison of stable isotope reference samples. Nature 302(5905):236–238. doi: 10.1038/302236a0 CrossRefGoogle Scholar
  15. 15.
    Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ13 C measurements. Anal Chem 78(7):2439–2441. doi: 10.1021/ac052027c CrossRefGoogle Scholar
  16. 16.
    Coplen TA (1994) Reporting of stable hydrogen, carbon and oxygen isotopic abundances (Technical Report). Pure Appl Chem 66(2):273–275CrossRefGoogle Scholar
  17. 17.
    Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519. doi: 10.1002/rcm.258 CrossRefGoogle Scholar
  18. 18.
    Skrzypek G, Sadler R (2011) A strategy for selection of reference materials in stable oxygen isotope analyses of solid materials. Rapid Commun Mass Spectrom 25(11):1625–1630. doi: 10.1002/rcm.5032 CrossRefGoogle Scholar
  19. 19.
    Skrzypek G, Sadler R, Paul D (2011) Error propagation in normalization of stable isotope data: a Monte Carlo analysis. Rapid Commun Mass Spectrom 24(18):2697–2705. doi: 10.1002/rcm.4684 CrossRefGoogle Scholar
  20. 20.
    Porter TJ, Middlestead P (2012) On estimating the precision of stable isotope ratios in processed tree-rings. Dendrochronologia 30(3):239–242. doi: 10.1016/j.dendro.2012.02.001 CrossRefGoogle Scholar
  21. 21.
    Coplen TB, Qi H (2010) Applying the silver-tube introduction method for thermal conversion elemental analyses and a new δ 2H value for NBS 22 oil. Rapid Commun Mass Spectrom 24(15):2269–2276. doi: 10.1002/rcm.4638 CrossRefGoogle Scholar
  22. 22.
    Qi H, Gröning M, Coplen TB, Buck B, Mroczkowski SJ, Brand WA, Geilmann H, Gehre M (2010) Novel silver-tubing method for quantitative introduction of water into high-temperature conversion systems for stable hydrogen and oxygen isotopic measurements. Rapid Commun Mass Spectrom 24(13):1821–1827. doi: 10.1002/rcm.4559 CrossRefGoogle Scholar
  23. 23.
    Brand WA, Coplen TB, Aerts-Bijma AT, Böhlke JK, Gehre M, Geilmann H, Gröning M, Jansen HG, Meijer HAJ, Mroczkowski J, Qi H, Soerge K, Stuart-Williams H, Weise SM, Werner RA (2009) Comprehensive inter-laboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques. Rapid Commun Mass Spectrom 2009(7):999–1019. doi: 10.1002/rcm.3958 CrossRefGoogle Scholar
  24. 24.
    Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39(3):211–217. doi: 10.1080=1025601031000096781 CrossRefGoogle Scholar
  25. 25.
    Landwehr JM, Meier-Augenstein W, Kemp HF (2011) A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable. Rapid Commun Mass Spectrom 25(2):301–306. doi: 10.1002/rcm.4854 CrossRefGoogle Scholar
  26. 26.
    Brand WA (2009) Maintaining high precision of isotope ratio analysis over extended periods of time. Isotopes Environ Health Stud 45(2):135–149. doi: 10.1080/10256010902869097 CrossRefGoogle Scholar
  27. 27.
    Fry B (2007) Coupled N, C and S stable isotope measurements using a dual-column gas chromatography system. Rapid Commun Mass Spectrom 21(5):750–756. doi: 10.1002/rcm.2892 CrossRefGoogle Scholar
  28. 28.
    Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149. doi: CrossRefGoogle Scholar
  29. 29.
    Brand WA, Assonov SS, Coplen TA (2010) Correction for the 17O interference in δ13C measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure Appl Chem 82(8):1719–1733CrossRefGoogle Scholar
  30. 30.
    Santrock J, Studley SA, Hayes JM (1985) Isotopic analyses based on the mass spectrum of carbon dioxide. Anal Chem 57:1444–1448. doi: 10.1021/ac00284a060 CrossRefGoogle Scholar
  31. 31.
    Kaiser J, Röckmann T (2008) Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2. Rapid Commun Mass Spectrom 22(24):3997–4008. doi: 10.1002/rcm.3821 CrossRefGoogle Scholar
  32. 32.
    Sessions AL, Burgoyne TW, Hayes JM (2001) Correction of H3 + contributions in hydrogen isotope ratio monitoring mass spectrometry. Anal Chem 73:192–199. doi: 10.1021/ac000488m CrossRefGoogle Scholar
  33. 33.
    Fry B, Brand W, Mersch FJ, Tholke K, Garritt R (1992) Automated analysis system for coupled d13C and d15N measurements. Anal Chem 64(3):288–291. doi: 10.1021/ac00027a009 Google Scholar
  34. 34.
    Polissar PJ, Fulton JM, Junium CK, Turich CC, Freeman KH (2009) Measurements of δ 13C and δ 15N isotopic composition of nanomolar quantities of C and N. Anal Chem 81(2):755–763. doi: 10.1021/ac801370c CrossRefGoogle Scholar
  35. 35.
    Ogawa NO, Nagata T, Kitazato H, Ohkouchi N (2010) Ultra-sensitive elemental analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. In: Ohkouchi N, Tayasu I (eds) Earth, life and isotopes. Kyoto University press, Kyoto, pp 339–354Google Scholar
  36. 36.
    Fry B (2006) Stable isotope ecology. Springer, New York. doi: 10.1007/0-387-33745-8 CrossRefGoogle Scholar
  37. 37.
    Gröning M (2011) Improved water δ2H and δ18O calibration and calculation of measurement uncertainty using a simple software tool. Rapid Commun Mass Spectrom 25(19):2711–2720. doi: 10.1002/rcm.5074 CrossRefGoogle Scholar
  38. 38.
    Paul D, Skrzypek G, Fórizs I (2007) Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Commun Mass Spectrom 21(18):3006–3014. doi: 10.1002/rcm.3185 CrossRefGoogle Scholar
  39. 39.
    Thompson M, Wood R (1993) The international harmonized protocol for the proficiency testing of (chemical) analytical laboratories (Technical Report). Pure Appl Chem 65(9):2123–2144CrossRefGoogle Scholar
  40. 40.
    Santrock J, Hayes JM (1987) Adaptation of the Unterzaucher procedure for determination of oxygen-18 in organic substances. Anal Chem 59(1):119–127. doi: 10.1021/ac00128a025 CrossRefGoogle Scholar
  41. 41.
    Hunsinger GB, Stern LA (2012) Improved accuracy in high-temperature conversion elemental analyzer δ18O measurements of nitrogen-rich organics. Rapid Commun Mass Spectrom 26(5):554–562. doi: 10.1002/rcm.6132 CrossRefGoogle Scholar
  42. 42.
    Gehre M, Geilmann H, Richter J, Werner RA, Brand WA (2004) Continuous flow 2H/1H and 18O/16O analysis of water samples with dual inlet precision. Rapid Commun Mass Spectrom 18(22):2650–2660. doi: 10.1002/rcm.1672 CrossRefGoogle Scholar
  43. 43.
    Stricker CA, Rye RO, Johnson R, Rye RO, Johnson CA, Bern C (2006) An automated cryo-focusing approach for sulfur isotope analysis of organic and other low-level sulfur materials. In: The 5th International Conference on Applications of Stable Isotope Techniques to Ecological Studies, Belfast, IrelandGoogle Scholar
  44. 44.
    Hansen T, Burmeister A, Sommer U (2009) Simultaneous δ 15N, δ 13C and δ 34S measurements of low biomass samples using a technically advanced high sensitivity elemental analyzer connected to an isotope ratio mass spectrometer. Rapid Commun Mass Spectrom 23:3387–3393. doi: 10.1002/rcm.4267 CrossRefGoogle Scholar
  45. 45.
    Dugan G (1977) Automatic carbon, hydrogen, nitrogen, sulfur analyser chemistry of sulfur reactions. Anal Lett 10:639–657. doi: 10.1080/00032717708059229 CrossRefGoogle Scholar
  46. 46.
    Fry B, Silva SR, Kendall C, Anderson RK (2002) Oxygen isotope corrections for online d34 S analysis. Rapid Commun Mass Spectrom 16:854–858. doi: 10.1002/rcm.651 CrossRefGoogle Scholar
  47. 47.
    Holt BD, Engelkemeir AG (1970) Thermal decomposition of barium sulfate to sulfur dioxide for mass spectrometric analysis. Anal Chem 42(12):1451–1453. doi: 10.1021/ac60294a032 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Queensland Health Forensic and Scientific ServiceArcherfieldAustralia
  2. 2.Griffith University–Australian Rivers InstituteQueenslandAustralia

Personalised recommendations