Analytical and Bioanalytical Chemistry

, Volume 405, Issue 4, pp 1345–1351 | Cite as

Intracellular in vitro probe acylcarnitine assay for identifying deficiencies of carnitine transporter and carnitine palmitoyltransferase-1

  • Jamiyan Purevsuren
  • Hironori Kobayashi
  • Yuki Hasegawa
  • Kenji Yamada
  • Tomoo Takahashi
  • Masaki Takayanagi
  • Toshiyuki Fukao
  • Seiji Fukuda
  • Seiji Yamaguchi
Original Paper

Abstract

Mitochondrial fatty acid oxidation (FAO) disorders are caused by defects in one of the FAO enzymes that regulates cellular uptake of fatty acids and free carnitine. An in vitro probe acylcarnitine (IVP) assay using cultured cells and tandem mass spectrometry is a tool to diagnose enzyme defects linked to most FAO disorders. Extracellular acylcarnitine (AC) profiling detects carnitine palmitoyltransferase-2, carnitine acylcarnitine translocase, and other FAO deficiencies. However, the diagnosis of primary carnitine deficiency (PCD) or carnitine palmitoyltransferase-1 (CPT1) deficiency using the conventional IVP assay has been hampered by the presence of a large amount of free carnitine (C0), a key molecule deregulated by these deficiencies. In the present study, we developed a novel IVP assay for the diagnosis of PCD and CPT1 deficiency by analyzing intracellular ACs. When exogenous C0 was reduced, intracellular C0 and total AC in these deficiencies showed specific profiles clearly distinguishable from other FAO disorders and control cells. Also, the ratio of intracellular to extracellular C0 levels showed a significant difference in cells with these deficiencies compared with control. Hence, intracellular AC profiling using the IVP assay under reduced C0 conditions is a useful method for diagnosing PCD or CPT1 deficiency.

Keywords

Fatty acid oxidation Carnitine cycle disorder Acylcarnitine profile ESI-MS/MS 

References

  1. 1.
    McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14CrossRefGoogle Scholar
  2. 2.
    Sim KG, Hammond J, Wilcken B (2002) Strategies for the diagnosis of mitochondrial fatty acid beta-oxidation disorders. Clin Chim Acta 323:37–58CrossRefGoogle Scholar
  3. 3.
    Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A et al (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273:20378–20382CrossRefGoogle Scholar
  4. 4.
    Treem WR, Stanley CA, Finegold DN, Hale DE, Coates PM (1988) Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. N Engl J Med 319:1331–1336CrossRefGoogle Scholar
  5. 5.
    Eriksson BO, Gustafson B, Lindstedt S, Nordin I (1989) Transport of carnitine into cells in hereditary carnitine deficiency. J Inherit Metab Dis 12:108–111CrossRefGoogle Scholar
  6. 6.
    Longo N, di San A, Filippo C, Pasquali M (2006) Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 142C:77–85CrossRefGoogle Scholar
  7. 7.
    Nakajima Y, Ito T, Maeda Y, Ichiki S, Sugiyama N et al (2010) Detection of pivaloylcarnitine in pediatric patients with hypocarnitinemia after long-term administration of pivalate-containing antibiotics. Tohoku J Exp Med 221:309–313CrossRefGoogle Scholar
  8. 8.
    Hori T, Fukao T, Kobayashi H, Teramoto T, Takayanagi M et al (2010) Carnitine palmitoyltransferase 2 deficiency: the time-course of blood and urinary acylcarnitine levels during initial l-carnitine supplementation. Tohoku J Exp Med 221:191–195CrossRefGoogle Scholar
  9. 9.
    Tein I, DiMauro S, Xie ZW, De Vivo DC (1993) Valproic acid impairs carnitine uptake in cultured human skin fibroblasts. An in vitro model for the pathogenesis of valproic acid-associated carnitine deficiency. Pediatr Res 34:281–287CrossRefGoogle Scholar
  10. 10.
    Pons R, Carrozzo R, Tein I, Walker WF, Addonizio LJ et al (1997) Deficient muscle carnitine transport in primary carnitine deficiency. Pediatr Res 42:583–587CrossRefGoogle Scholar
  11. 11.
    Scaglia F, Wang Y, Longo N (1999) Functional characterization of the carnitine transporter defective in primary carnitine deficiency. Arch Biochem Biophys 364:99–106CrossRefGoogle Scholar
  12. 12.
    Wang Y, Ye J, Ganapathy V, Longo N (1999) Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci U S A 96:2356–2360CrossRefGoogle Scholar
  13. 13.
    Endo M, Hasegawa Y, Fukuda S, Kobayashi H, Yotsumoto Y et al (2010) In vitro probe acylcarnitine profiling assay using cultured fibroblasts and electrospray ionization tandem mass spectrometry predicts severity of patients with glutaric aciduria type 2. J Chromatogr B Analyt Technol Biomed Life Sci 878:1673–1676CrossRefGoogle Scholar
  14. 14.
    Law LK, Tang NL, Hui J, Ho CS, Ruiter J et al (2007) A novel functional assay for simultaneous determination of total fatty acid beta-oxidation flux and acylcarnitine profiling in human skin fibroblasts using (2)H(31)-palmitate by isotope ratio mass spectrometry and electrospray tandem mass spectrometry. Clin Chim Acta 382:25–30CrossRefGoogle Scholar
  15. 15.
    Okun JG, Kolker S, Schulze A, Kohlmuller D, Olgemoller K et al (2002) A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim Biophys Acta 1584:91–98CrossRefGoogle Scholar
  16. 16.
    Jauregui O, Sierra AY, Carrasco P, Gratacos E, Hegardt FG et al (2007) A new LC-ESI-MS/MS method to measure long-chain acylcarnitine levels in cultured cells. Anal Chim Acta 599:1–6CrossRefGoogle Scholar
  17. 17.
    Ventura FV, Costa CG, Struys EA, Ruiter J, Allers P et al (1999) Quantitative acylcarnitine profiling in fibroblasts using [U-13C] palmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. Clin Chim Acta 281:1–17CrossRefGoogle Scholar
  18. 18.
    Li H, Fukuda S, Hasegawa Y, Kobayashi H, Purevsuren J et al (2010) Effect of heat stress and bezafibrate on mitochondrial beta-oxidation: comparison between cultured cells from normal and mitochondrial fatty acid oxidation disorder children using in vitro probe acylcarnitine profiling assay. Brain Dev 32:362–370CrossRefGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  20. 20.
    Honma Y, Ishii Y, Yamamoto-Yamaguchi Y, Sassa T, Asahi K (2003) Cotylenin A, a differentiation-inducing agent, and IFN-alpha cooperatively induce apoptosis and have an antitumor effect on human non-small cell lung carcinoma cells in nude mice. Cancer Res 63:3659–3666Google Scholar
  21. 21.
    Schulze-Bergkamen A, Okun JG, Spiekerkotter U, Lindner M, Haas D et al (2005) Quantitative acylcarnitine profiling in peripheral blood mononuclear cells using in vitro loading with palmitic and 2-oxoadipic acids: biochemical confirmation of fatty acid oxidation and organic acid disorders. Pediatr Res 58:873–880CrossRefGoogle Scholar
  22. 22.
    Tein I, De Vivo DC, Bierman F, Pulver P, De Meirleir LJ et al (1990) Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediatr Res 28:247–255CrossRefGoogle Scholar
  23. 23.
    Stanley CA (1987) New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency. Adv Pediatr Infect Dis 34:59–88Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jamiyan Purevsuren
    • 1
    • 5
  • Hironori Kobayashi
    • 1
  • Yuki Hasegawa
    • 1
  • Kenji Yamada
    • 1
  • Tomoo Takahashi
    • 1
  • Masaki Takayanagi
    • 2
  • Toshiyuki Fukao
    • 3
    • 4
  • Seiji Fukuda
    • 1
  • Seiji Yamaguchi
    • 1
  1. 1.Department of PediatricsShimane University School of MedicineIzumoJapan
  2. 2.Division of MetabolismChiba Children’s HospitalChibaJapan
  3. 3.Department of Pediatrics, Graduate School of MedicineGifu UniversityGifuJapan
  4. 4.Medical Information Sciences Division, United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
  5. 5.Medical Genetics LaboratoryNational Center for Maternal and Child HealthUlaanbaatarMongolia

Personalised recommendations