Skip to main content
Log in

Development, optimization, and use of an APCI source with temperature-controlled vaporization of solid and liquid samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A trend is observed in mass spectrometry, in which solid samples without prior dissolution and chromatographic separation are brought directly into the ion source and are ionized, e.g., by corona discharge (Atmospheric Solids Analysis Probe) or plasma (Direct Analysis in Real Time). The Direct Inlet Probe-atmospheric-pressure chemical ionization (APCI) ion source presented here, which was coupled to a high-resolution quadrupole time-of-flight–mass spectrometer, differs from most of the other ion sources in having temperature-programmed heating of the sample. The resulting possibility to reduce ion suppression and ion-molecule reactions in the ion source was shown by the separation of two fatty acid methyl esters as a result of their boiling point difference. Using caffeine as sample, certain source parameters such as the auxiliary gas flow, the drying gas flow, and the position of the probe tip in the ion source were optimized. The ability to perform quantitative analyses was shown by the linear concentration response (R 2 = 0.9984) observed when analyzing different caffeine concentrations. An extract of a Chinese medicinal herb was used to examine the reproducibility (relative standard deviations of the most abundant m/z signals were ≤8.1 %). It was also possible to distinguish milled samples of Radix Angelicae sinensis and Radix Angelicae gigas from each other and to identify the coumarins they contain without sample preparation. Supplying synthetic air instead of nitrogen to the ion source makes APCI in the negative mode possible as well; this was proven by the analysis of n-nonyl-β-d-maltoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  2. Annesley TM (2003) Clin Chem 49:1041–1044

    Article  CAS  Google Scholar 

  3. McEwen CN, Mckay RG, Larsen BS (2005) Anal Chem 77:7826–7831

    Article  CAS  Google Scholar 

  4. McEwen C, Gutteridge S (2007) J Am Soc Mass Spec 18:1274–1278

    Article  CAS  Google Scholar 

  5. Ray AD, Hammond J, Major H (2010) Eur J Mass Spectrom 16:169–174

    Article  CAS  Google Scholar 

  6. Cody RB, Laramee JA, Durst HD (2005) Anal Chem 77:2297–2302

    Article  CAS  Google Scholar 

  7. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Science 306:471–473

    Article  CAS  Google Scholar 

  8. Laramee JA, Cody RB (2007) In: Gross ML, Caprioli RM (eds) The encyclopedia of mass spectrometry, volume 6. Elsevier, Amsterdam

  9. Schurek J, Vaclavik L, Hooijerink H, Lacina O, Poustka J, Sharman M, Caldow M, Nielen MWF, Hajslova J (2008) Anal Chem 80:9567–9575

    Article  CAS  Google Scholar 

  10. Nilles JM, Connell TR, Durst HD (2009) Anal Chem 81:6744–6749

    Article  CAS  Google Scholar 

  11. Lloyd JA, Harron AF, Mcewen CN (2009) Anal Chem 81:9158–9162

    Article  CAS  Google Scholar 

  12. Ahmed A, Cho YJ, No MH, Koh J, Tomczyk N, Giles K, Yoo JS, Kim S (2011) Anal Chem 83:77–83

    Article  CAS  Google Scholar 

  13. Pan HF, Lundin G (2011) Eur J Mass Spectrom 17:217–225

    Article  CAS  Google Scholar 

  14. Maleknia SD, Vail TM, Cody RB, Sparkman DO, Bell TL, Adams MA (2009) Rapid Commun Mass Sp 23:2241–2246

    Article  CAS  Google Scholar 

  15. Edison SE, Lin LA, Gamble BM, Wong J, Zhang K (2011) Rapid Commun Mass Sp 25:127–139

    Article  CAS  Google Scholar 

  16. Yu SX, Crawford E, Tice J, Musselman B, Wu JT (2009) Anal Chem 81:193–202

    Article  CAS  Google Scholar 

  17. Van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) J Mass Spectrom 43:1161–1180

    Article  Google Scholar 

  18. McEwen CN, Larsen BS (2009) J Am Soc Mass Spec 20:1518–1521

    Article  CAS  Google Scholar 

  19. Lao SC, Li SP, Kan KKW, Li P, Wan JB, Wang YT, Dong TTX, Tsim KWK (2004) Anal Chim Acta 526:131–137

    Article  CAS  Google Scholar 

  20. Constapel M, Schellentrager M, Schmitz OJ, Gab S, Brockmann KJ, Giese R, Benter T (2005) Rapid Commun Mass Sp 19:326–336

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Scientific Instruments Manufacturer GmbH (SIM) for providing the direct inlet probe and Shimadzu Europa GmbH for the GC × GC-MS. Sonja Krieger also thanks the Zentrum fuer Graduiertenstudien for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver J. Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, S., von Trotha, A., Leung, K.SY. et al. Development, optimization, and use of an APCI source with temperature-controlled vaporization of solid and liquid samples. Anal Bioanal Chem 405, 1373–1381 (2013). https://doi.org/10.1007/s00216-012-6531-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6531-4

Keywords

Navigation