Analytical and Bioanalytical Chemistry

, Volume 405, Issue 11, pp 3659–3672 | Cite as

Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications

  • Evgeny Katz
  • Segiy Minko
  • Jan Halámek
  • Kevin MacVittie
  • Kenneth Yancey


This review outlines advances in designing modified electrodes with switchable properties controlled by various physical and chemical signals. Irradiation of the modified electrode surfaces with various light signals, changing the temperature of the electrolyte solution, application of a magnetic field or electrical potentials, changing the pH of the solutions, and addition of chemical/biochemical substrates were used to change reversibly the electrode activity. The increasing complexity in the signal processing was achieved by integration of the switchable electrode interfaces with biomolecular information processing systems mimicking Boolean logic operations, thus allowing activation and inhibition of electrochemical processes on demand by complex combinations of biochemical signals. The systems reviewed range from simple chemical compositions to complex mixtures modeling biological fluids, where the signal substrates were added at normal physiological and elevated pathological concentrations. The switchable electrode interfaces are considered for future biomedical applications where the electrode properties will be modulated by the biomarker concentrations reflecting physiological conditions.


Modified electrodes were reversibly switched between active and inactive states by various physical and chemical signals.


Modified electrode Signal-responsive material Switchable electrode Biocomputing Logic gate Biosensor 



This research was supported by the National Science Foundation (grants DMR-0706209, CCF-0726698, CCF-1015983) and by the Office of Naval Research (grant ONR N00014-08-1-1202).


  1. 1.
    Murray RW (1984) In: Bard AJ (ed) Electroanalytical chemistry, vol 13. Dekker, New York, pp 191–368Google Scholar
  2. 2.
    Murray RW (1980) Acc Chem Res 13:135–141CrossRefGoogle Scholar
  3. 3.
    Wrighton MS (1986) Science 231:32–37CrossRefGoogle Scholar
  4. 4.
    Abruña HD (1988) Coord Chem Rev 86:135–189CrossRefGoogle Scholar
  5. 5.
    Bain CD, Troughton EB, Tao Y-T, Eval J, Whitesides GM, Nuzzo RG (1989) J Am Chem Soc 111:321–335CrossRefGoogle Scholar
  6. 6.
    Nuzzo RG, Fusco FA, Allara DL (1987) J Am Chem Soc 109:2358–2368CrossRefGoogle Scholar
  7. 7.
    Rusling JF, Forster RJ (2003) J Colloid Interface Sci 262:1–15CrossRefGoogle Scholar
  8. 8.
    Willner I, Katz E (2000) Angew Chem Int Ed 39:1180–1218CrossRefGoogle Scholar
  9. 9.
    Wang J (2008) Talanta 75:636–641CrossRefGoogle Scholar
  10. 10.
    Gooding JJ (2008) Electroanalysis 20:573–582CrossRefGoogle Scholar
  11. 11.
    Moehlenbrock MJ, Minteer SD (2008) Chem Soc Rev 37:1188–1196CrossRefGoogle Scholar
  12. 12.
    Barton SC, Gallaway J, Atanassov P (2004) Chem Rev 104:4867–4886CrossRefGoogle Scholar
  13. 13.
    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Nature Mater 9:101–113CrossRefGoogle Scholar
  14. 14.
    Minko S (2006) Polym Rev 46:397–420Google Scholar
  15. 15.
    Luzinov I, Minko S, Tsukruk VV (2004) Prog Polym Sci 29:635–698CrossRefGoogle Scholar
  16. 16.
    Pita M, Katz E (2009) Electroanalysis 21:252–260CrossRefGoogle Scholar
  17. 17.
    Bocharova V, Katz E (2012) Chem Rec 12:114–130CrossRefGoogle Scholar
  18. 18.
    Laocharoensuk R, Bulbarello A, Hocevar SB, Mannino S, Ogorevc B, Wang J (2007) J Am Chem Soc 129:7774–7775CrossRefGoogle Scholar
  19. 19.
    Wang J, Musameh M, Laocharoensuk R, Gonzalez-Garcia O, Oni J, Gervasio D (2006) Electrochem Commun 8:1106–1110CrossRefGoogle Scholar
  20. 20.
    Shipway AN, Katz E, Willner I (2001) In: Sauvage J-P (ed) Molecular machines and motors. Structure and bonding, vol 99. Springer, Berlin, pp. 237–281Google Scholar
  21. 21.
    Katz E, Shipway AN, Willner I (2002) In: Sekkat S, Knoll W (eds) Photoreactive organic thin films. Elsevier, San Diego, pp 219–268CrossRefGoogle Scholar
  22. 22.
    Willner I, Katz E (2003) Angew Chem Int Ed 42:4576–4588CrossRefGoogle Scholar
  23. 23.
    Wang J (2008) Electroanalysis 20:611–615CrossRefGoogle Scholar
  24. 24.
    Song S, Hu N (2010) J Phys Chem B 114:5940–5945CrossRefGoogle Scholar
  25. 25.
    Tam TK, Pita M, Trotsenko O, Motornov M, Tokarev I, Halámek J, Minko S, Katz E (2010) Langmuir 26:4506–4513CrossRefGoogle Scholar
  26. 26.
    Tam TK, Pita M, Motornov M, Tokarev I, Minko S, Katz E (2010) Adv Mater 22:1863–1866CrossRefGoogle Scholar
  27. 27.
    Hou KY, Yu L, Severson MW, Zeng XQ (2005) J Phys Chem B 109:9527–9531CrossRefGoogle Scholar
  28. 28.
    Tam TK, Zhou J, Pita M, Ornatska M, Minko S, Katz E (2008) J Am Chem Soc 130:10888–10889CrossRefGoogle Scholar
  29. 29.
    Katz E (ed) (2012) Molecular and supramolecular information processing: from molecular switches to logic systems. Wiley-VCH, WeinheimGoogle Scholar
  30. 30.
    Katz E (ed) (2012) Biomolecular information processing—from logic systems to smart sensors and actuators. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Katz E, Privman V (2010) Chem Soc Rev 39:1835–1857CrossRefGoogle Scholar
  32. 32.
    Privman M, Tam TK, Pita M, Katz E (2009) J Am Chem Soc 131:1314–1321CrossRefGoogle Scholar
  33. 33.
    Lion-Dagan M, Katz E, Willner I (1994) J Am Chem Soc 116:7913–7914CrossRefGoogle Scholar
  34. 34.
    Willner I, Lion-Dagan M, Katz E (1996) Chem Commun 623–624Google Scholar
  35. 35.
    Liu NG, Dunphy DR, Atanassov P, Bunge SD, Chen Z, Lopez GP, Boyle TJ, Brinker CJ (2004) Nano Lett 4:551–554CrossRefGoogle Scholar
  36. 36.
    Liu ZF, Hashimoto K, Fujishima A (1990) Nature 347:658–660CrossRefGoogle Scholar
  37. 37.
    Wesenhagen P, Areephong J, Landaluce TF, Heureux N, Katsonis N, Hjelm J, Rudolf P, Browne WR, Feringa BL (2008) Langmuir 24:6334–6342CrossRefGoogle Scholar
  38. 38.
    Browne WR, Kudernac T, Katsonis N, Areephong J, Hielm J, Feringa BL (2008) J Phys Chem C 112:1183–1190CrossRefGoogle Scholar
  39. 39.
    Doron A, Portnoy M, Lion-Dagan M, Katz E, Willner I (1996) J Am Chem Soc 118:8937–8944CrossRefGoogle Scholar
  40. 40.
    Willner I, Pardo-Yissar V, Katz E, Ranjit KT (2001) J Electroanal Chem 497:172–177CrossRefGoogle Scholar
  41. 41.
    Willner I, Lion-Dagan M, Marx-Tibbon S, Katz E (1995) J Am Chem Soc 117:6581–6592CrossRefGoogle Scholar
  42. 42.
    Yin Z, Zhang J, Jiang L-P, Zhu J-J (2009) J Phys Chem C 113:16104–16109CrossRefGoogle Scholar
  43. 43.
    Katz E, Baron R, Willner I (2005) J Am Chem Soc 127:4060–4070CrossRefGoogle Scholar
  44. 44.
    Katz E, Sheeney-Haj-Ichia L, Basnar B, Felner I, Willner I (2004) Langmuir 20:9714–9719CrossRefGoogle Scholar
  45. 45.
    Katz E, Sheeney-Haj-Ichia L, Willner I (2002) Chem Eur J 8:4138–4148CrossRefGoogle Scholar
  46. 46.
    Wang J, Kawde AN (2002) Electrochem Commun 4:349–352CrossRefGoogle Scholar
  47. 47.
    Laocharoensuk R, Bulbarello A, Mannino S, Wang J (2007) Chem Commun 3362–3364Google Scholar
  48. 48.
    Loaiza OA, Laocharoensuk R, Burdick J, Rodriguez MC, Pingarron JM, Pedrero M, Wang J (2007) Angew Chem Int Ed 46:1508–1511CrossRefGoogle Scholar
  49. 49.
    Wang J, Scampicchio M, Laocharoensuk R, Valentini F, Gonzalez-Garcia O, Burdick J (2006) J Am Chem Soc 128:4562–4563CrossRefGoogle Scholar
  50. 50.
    Willner I, Katz E (2006) Langmuir 22:1409–1419CrossRefGoogle Scholar
  51. 51.
    Katz E, Willner I (2005) Angew Chem Int Ed 44:4791–4794CrossRefGoogle Scholar
  52. 52.
    Katz E, Willner I (2005) Chem Commun 4089–4091Google Scholar
  53. 53.
    Katz E, Lioubashevski O, Willner I (2006) Chem Commun 1109–1111Google Scholar
  54. 54.
    Katz E, Willner I (2005) Chem Commun 5641–5643Google Scholar
  55. 55.
    Katz E, Willner I (2006) Electrochem Commun 8:879–882CrossRefGoogle Scholar
  56. 56.
    Jimenez J, Sheparovych R, Pita M, Narvaez Garcia A, Dominguez E, Minko S, Katz E (2008) J Phys Chem C 112:7337–7344CrossRefGoogle Scholar
  57. 57.
    Raitman OA, Katz E, Willner I, Chegel VI, Popova GV (2001) Angew Chem Int Ed 40:3649–3652CrossRefGoogle Scholar
  58. 58.
    Chegel V, Raitman O, Katz E, Gabai R, Willner I (2001) Chem Commun 883–884Google Scholar
  59. 59.
    Zheng L, Xiong L (2006) Colloids Surf A 289:179–184CrossRefGoogle Scholar
  60. 60.
    Chegel VI, Raitman OA, Lioubashevski O, Shirshov Y, Katz E, Willner I (2002) Adv Mater 14:1549–1553CrossRefGoogle Scholar
  61. 61.
    Riskin M, Basnar B, Chegel VI, Katz E, Willner I, Shi F, Zhang X (2006) J Am Chem Soc 128:1253–1260CrossRefGoogle Scholar
  62. 62.
    Riskin M, Basnar B, Katz E, Willner I (2006) Chem Eur J 12:8549–8557CrossRefGoogle Scholar
  63. 63.
    Riskin M, Katz E, Willner I (2006) Langmuir 22:10483–10489CrossRefGoogle Scholar
  64. 64.
    Katz E, Willner I (2003) J Am Chem Soc 125:6803–6813CrossRefGoogle Scholar
  65. 65.
    Katz E, Bückmann AF, Willner I (2001) J Am Chem Soc 123:10752–10753CrossRefGoogle Scholar
  66. 66.
    Diamond D, McKervey MA (1996) Chem Soc Rev 25:15–24CrossRefGoogle Scholar
  67. 67.
    Yang DH, Ju M-J, Maeda A, Hayashi K, Toko K, Lee S-W, Kunitake T (2006) Biosens Bioelectron 22:388–392CrossRefGoogle Scholar
  68. 68.
    Gabai R, Sallacan N, Chegel V, Bourenko T, Katz E, Willner I (2001) J Phys Chem B 105:8196–8202CrossRefGoogle Scholar
  69. 69.
    Motornov M, Tam TK, Pita M, Tokarev I, Katz E, Minko S (2009) Nanotechnology 434006Google Scholar
  70. 70.
    Tam TK, Pita M, Motornov M, Tokarev I, Minko S, Katz E (2010) Electroanalysis 22:35–40CrossRefGoogle Scholar
  71. 71.
    Tam TK, Ornatska M, Pita M, Minko S, Katz E (2008) J Phys Chem C 112:8438–8445CrossRefGoogle Scholar
  72. 72.
    Bocharova V, Tam TK, Halámek J, Pita M, Katz E (2010) Chem Commun 46:2088–2090CrossRefGoogle Scholar
  73. 73.
    Pita M, Tam TK, Minko S, Katz E (2009) ACS Appl Mater Interfaces 1:1166–1168CrossRefGoogle Scholar
  74. 74.
    Baron R, Onopriyenko A, Katz E, Lioubashevski O, Willner I, Wang S, Tian H (2006) Chem Commun 2147–2149Google Scholar
  75. 75.
    Calude CS, Costa JF, Dershowitz N, Freire E, Rozenberg G (eds) (2009) Unconventional computation. Lecture notes in computer science, vol. 5715 Springer, BerlinGoogle Scholar
  76. 76.
    Adamatzky A, De Lacy Costello B, Bull L, Stepney S, Teuscher C (eds) (2007) Unconventional computing. Luniver, Beckington, UKGoogle Scholar
  77. 77.
    Gheorghe M (2005) Molecular computation models: unconventional approaches. Idea Group Publishing, Hershay, PAGoogle Scholar
  78. 78.
    de Silva AP, Uchiyama S (2007) Nat Nanotechnol 2:399–410CrossRefGoogle Scholar
  79. 79.
    Szacilowski K (2008) Chem Rev 108:3481–3548CrossRefGoogle Scholar
  80. 80.
    Credi A (2007) Angew Chem Int Ed 46:5472–5475CrossRefGoogle Scholar
  81. 81.
    Pischel U (2007) Angew Chem Int Ed 46:4026–4040CrossRefGoogle Scholar
  82. 82.
    Andreasson J, Pischel U (2010) Chem Soc Rev 39:174–188CrossRefGoogle Scholar
  83. 83.
    Katz E, Bocharova V, Privman V (2012) J Mater Chem 22:8171–8178CrossRefGoogle Scholar
  84. 84.
    Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) J Phys Chem A 110:8548–8553CrossRefGoogle Scholar
  85. 85.
    Strack G, Pita M, Ornatska M, Katz E (2008) Chembiochem 9:1260–1266CrossRefGoogle Scholar
  86. 86.
    Privman V, Zhou J, Halámek J, Katz E (2010) J Phys Chem B 114:13601–13608CrossRefGoogle Scholar
  87. 87.
    Melnikov D, Strack G, Zhou J, Windmiller JR, Halámek J, Bocharova V, Chuang M-C, Santhosh P, Privman V, Wang J, Katz E (2010) J Phys Chem B 114:12166–12174CrossRefGoogle Scholar
  88. 88.
    Zhou J, Arugula MA, Halámek J, Pita M, Katz E (2009) J Phys Chem B 113:16065–16070CrossRefGoogle Scholar
  89. 89.
    Niazov T, Baron R, Katz E, Lioubashevski O, Willner I (2006) Proc Natl Acad Sci USA 103:17160–17163CrossRefGoogle Scholar
  90. 90.
    Privman V, Arugula MA, Halámek J, Pita M, Katz E (2009) J Phys Chem B 113:5301–5310CrossRefGoogle Scholar
  91. 91.
    Tam TK, Pita M, Katz E (2009) Sens Actuators B 140:1–4CrossRefGoogle Scholar
  92. 92.
    Pita M, Minko S, Katz E (2009) J Mater Sci Mater Med 20:457–462CrossRefGoogle Scholar
  93. 93.
    Minko S, Katz E, Motornov M, Tokarev I, Pita M (2011) J Comput Theor Nanosci 8:356–364CrossRefGoogle Scholar
  94. 94.
    Halámek J, Zhou J, Halámková L, Bocharova V, Privman V, Wang J, Katz E (2011) Anal Chem 83:8383–8386CrossRefGoogle Scholar
  95. 95.
    Bocharova V, Halámek J, Zhou J, Strack G, Wang J, Katz E (2011) Talanta 85:800–803CrossRefGoogle Scholar
  96. 96.
    Zhou N, Windmiller JR, Valdés Ramírez G, Zhou M, Halámek J, Katz E, Wang J (2011) Anal Chim Acta 703:94–100CrossRefGoogle Scholar
  97. 97.
    Tokarev I, Gopishetty V, Zhou J, Pita M, Motornov M, Katz E, Minko S (2009) ACS Appl Mater Interfaces 1:532–536CrossRefGoogle Scholar
  98. 98.
    Wang X, Zhou J, Tam TK, Katz E, Pita M (2009) Bioelectrochemistry 77:69–73CrossRefGoogle Scholar
  99. 99.
    Motornov M, Zhou J, Pita M, Tokarev I, Gopishetty V, Katz E, Minko S (2009) Small 5:817–820CrossRefGoogle Scholar
  100. 100.
    Motornov M, Zhou J, Pita M, Gopishetty V, Tokarev I, Katz E, Minko S (2008) Nano Lett 8:2993–2997CrossRefGoogle Scholar
  101. 101.
    Wang J, Katz E (2011) Isr J Chem 51:141–150CrossRefGoogle Scholar
  102. 102.
    Wang J, Katz (2010) Anal Bioanal Chem 398:1591–1603CrossRefGoogle Scholar
  103. 103.
    Zhou J, Halámek J, Bocharova V, Wang J, Katz E (2011) Talanta 83:955–959CrossRefGoogle Scholar
  104. 104.
    Halámek J, Bocharova V, Chinnapareddy S, Windmiller JR, Strack G, Chuang M-C, Zhou J, Santhosh P, Ramirez GV, Arugula MA, Wang J, Katz E (2010) Mol Biosyst 6:2554–2560CrossRefGoogle Scholar
  105. 105.
    Halámek J, Windmiller JR, Zhou J, Chuang M-C, Santhosh P, Strack G, Arugula MA, Chinnapareddy S, Bocharova V, Wang J, Katz E (2010) Analyst 135:2249–2259CrossRefGoogle Scholar
  106. 106.
    Privman M, Tam TK, Bocharova V, Halámek J, Wang J, Katz E (2011) ACS Appl Mater Interfaces 3:1620–1623CrossRefGoogle Scholar
  107. 107.
    Tam TK, Pita M, Ornatska M, Katz E (2009) Bioelectrochemistry 76:4–9CrossRefGoogle Scholar
  108. 108.
    Amir L, Tam TK, Pita M, Meijler MM, Alfonta L, Katz E (2009) J Am Chem Soc 131:826–832CrossRefGoogle Scholar
  109. 109.
    Tam TK, Strack G, Pita M, Katz E (2009) J Am Chem Soc 131:11670–11671CrossRefGoogle Scholar
  110. 110.
    Li Z, Rosenbaum MA, Venkataraman A, Tam TK, Katz E, Angenent LT (2011) Chem Commun 47:3060–3062CrossRefGoogle Scholar
  111. 111.
    Arugula MA, Saffarini D, Katz E, He Z (2012) Chem Commun 48:10174–10176Google Scholar
  112. 112.
    Zhou M, Zhou N, Kuralay F, Windmiller JR, Parkhomovsky S, Valdés-Ramírez G, Katz E, Wang J (2012) Angew Chem Int Ed 51:2686–2689CrossRefGoogle Scholar
  113. 113.
    Katz E, Pita M (2009) Chem Eur J 15:12554–12564CrossRefGoogle Scholar
  114. 114.
    Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E (2012) Energy Environ Sci 5:8891–8895Google Scholar
  115. 115.
    Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) J Am Chem Soc 134:5040–5043CrossRefGoogle Scholar
  116. 116.
    Schröder U (2012) Angew Chem Int Ed 51:7370–7372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evgeny Katz
    • 1
  • Segiy Minko
    • 1
  • Jan Halámek
    • 1
  • Kevin MacVittie
    • 1
  • Kenneth Yancey
    • 1
  1. 1.Department of Chemistry and Biomolecular ScienceClarkson UniversityPotsdamUSA

Personalised recommendations