Skip to main content

Ionic liquid-salt aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of sulfonamides in water and food

Abstract

Ionic liquid-salt aqueous two-phase extraction coupled with high-performance liquid chromatography with ultraviolet detection was developed for the determination of sulfonamides in water and food samples. In the procedure, the analytes were extracted from the aqueous samples into the ionic liquid top phase in one step. Three sulfonamides, sulfamerazine, sulfamethoxazole, and sulfamethizole were selected here as model compounds for developing and evaluating the method. The effects of various experimental parameters in extraction step were studied using two optimization methods, one variable at a time and Box–Behnken design. The results showed that the amount of sulfonamides did not have effect on the extraction efficiency. Therefore, a three-level Box–Behnken experimental design with three factors, which combined the response surface modeling, was used to optimize sulfonamides extraction. Under the most favorable extraction parameters, the detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 0.15–0.3 ng/mL and 0.5–1.0 ng/mL from spiked samples, respectively, which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Finally, the proposed method was successfully applied to the determination of sulfonamide compounds in different water and food samples and satisfactory recoveries of spiked target compounds in real samples were obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Zhang W, Duan C, Wang M (2011) Food Chem 126:779–785

    Article  CAS  Google Scholar 

  2. Li JD, Cai YQ, Shi YL, Mou SF, Jiang GB (2007) J Chromatogr A 1216:3372–3379

    Google Scholar 

  3. Wom SY, Lee CH, Chang HS, Kim SO, Lee SH, Kim DS (2011) Food Chem 22:1101–1107

    Google Scholar 

  4. Pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin (2009) Commission Regulation No. 37/2010, European Community. Off J Eur Union L 15: 1–72

  5. The Maximum Residue Limit in Food of Animal Origin established by Ministry of Agriculture of P.R. China (2003) Chin J Vet Drug 37:15

  6. Chiavarino B, Crestoni ME, Marzio AD, Fornarini S (1998) J Chromatogr B 706:269–277

    Article  CAS  Google Scholar 

  7. Reeves VB (1999) J Chromatogr B 723:127–137

    Article  CAS  Google Scholar 

  8. Wen Y, Li J, Zhang W, Chen L (2011) Electrophoresis 32:2131–2138

    Article  CAS  Google Scholar 

  9. Soto-Chinchilla JJ, García-Campaña AM, Gámiz-Gracia L (2007) Electrophoresis 28:4164–4172

    Article  CAS  Google Scholar 

  10. García-Galán MJ, Díaz-Cruz MS, Barceló D (2010) Talanta 81:355–366

    Article  Google Scholar 

  11. Pailler JY, Krein A, Pfister L, Hoffmann L, Guignard C (2009) Sci Total Environ 407:4736–4743

    Article  CAS  Google Scholar 

  12. Tolika EP, Samanidou VF, Papadoyannis IN (2011) J Sep Sci 34:1627–1635

    Article  CAS  Google Scholar 

  13. Chitescu CL, Nicolau AL, Csuma A, Moisoiu C (2011) Food Addit Contam Part A 28:1013–1020

    Article  CAS  Google Scholar 

  14. Tsai WH, Chuang HY, Chen HH, Wu YW, Cheng SH, Huang TC (2010) J Chromatogr A 1217:7812–7815

    Article  CAS  Google Scholar 

  15. Bernal J, Nozal MJ, Jiménez JJ, Martín MT, Sanz E (2009) J Chromatogr A 1216:7275–7280

    Article  CAS  Google Scholar 

  16. Shelver WL, Hakk H, Larsen GL, DeSutter TM, Casey FXM (2010) J Chromatogr A 1217:1273–1282

    Article  CAS  Google Scholar 

  17. Verzegnassi L, Savoy-Perroud MC, Stadler RH (2002) J Chromatogr A 977:77–87

    Article  CAS  Google Scholar 

  18. Maudens KE, Zhang GF, Lambert WE (2004) J Chromatogr A 1047:85–92

    Article  CAS  Google Scholar 

  19. Raich-Montiu J, Folch J, Compañó R, Granados M, Prat MD (2004) J Chromatogr A 1172:186–193

    Google Scholar 

  20. Font G, Juan-García A, Picó Y (2004) J Chromatogr A 1159:233–241

    Google Scholar 

  21. Lu Y, Shen Q, Dai Z, Zhang H, Wang H (2011) J Chromatogr A 1218:929–937

    Article  CAS  Google Scholar 

  22. Kishida K, Furusawa N (2001) J Chromatogr A 937:49–55

    Article  CAS  Google Scholar 

  23. Lu KH, Chen CY, Lee MR (2007) Talanta 72:1082–1087

    Article  CAS  Google Scholar 

  24. Xu W, Su S, Jiang P, Wang H, Dong X, Zhang M (2010) J Chromatogr A 1217:7198–7207

    Article  CAS  Google Scholar 

  25. Yu H, Tao Y, Chen D, Wang Y, Huang L, Peng D, Dai M, Liu Z, Wang X, Yuan Z (2011) J Chromatogr B 879:2653–2662

    Article  CAS  Google Scholar 

  26. Lopes RP, Reyes RC, Romero-González R, Frenich AG, Vidal JLM (2012) Talanta 89:201–208

    Article  CAS  Google Scholar 

  27. Xu X, Su R, Zhao X, Liu Z, Zhang Y, Li D, Li X, Zhang H, Wang Z (2011) Anal Chim Acta 707:92–99

    Article  CAS  Google Scholar 

  28. Guo X, Yin D, Peng J, Hu X (2012) J Sep Sci 35:452–458

    Article  CAS  Google Scholar 

  29. Albertsson PA (1986) Partitioning of cell particles and macromolecules. Wiley, New York

    Google Scholar 

  30. Walter H, Brooks DE, Fisher D (1985) Partitioning in aqueous two-phase systems. Academic, New York

    Google Scholar 

  31. Zaslavsky BY (1995) Aqueous two-phase partitioning, physical chemistry and bioanalytical applications. Marcel Dekker, New York

    Google Scholar 

  32. Gu Z, Glatz CE (2007) J Chromatogr B 845:38–45

    Article  CAS  Google Scholar 

  33. Su CK, Chiang BH (2006) Process Biochem 41:257–263

    Article  CAS  Google Scholar 

  34. Gomes GA, Azevedo AM, Aires-Barros MR, Prazeres DMF (2009) Sep Purif Technol 65:22–30

    Article  CAS  Google Scholar 

  35. Azevedo AM, Gomes AG, Rosa PAJ, Ferreira IF, Pisco AMMO, Aires-Barros MR (2009) Sep Purif Technol 65:14–21

    Article  CAS  Google Scholar 

  36. Mokhtarani B, Karimzadeh R, Amini MH, Manesh SD (2008) Bio Eng J 38:241–247

    Article  CAS  Google Scholar 

  37. Shibukawa M, Nakayama N, Hayashi T, Shibuya D, Endo Y, Kawamura S (2001) Anal Chim Acta 427:293–300

    Article  CAS  Google Scholar 

  38. Tong AJ, Dong JJ, Li LD (1999) Anal Chim Acta 390:125–131

    Article  CAS  Google Scholar 

  39. Han X, Armstrong DW (2007) Accounts Chem Res 40:1079–1086

    Article  CAS  Google Scholar 

  40. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) J Am Chem Soc 125:6632–6633

    Article  CAS  Google Scholar 

  41. He C, Li S, Liu H, Li K, Liu F (2005) J Chromatogr A 1082:143–149

    Article  CAS  Google Scholar 

  42. Du Z, Yu YL, Wang JH (2007) Chem Eur J 13:2130–2137

    Article  CAS  Google Scholar 

  43. Ventura SPM, Neves CMSS, Freire MG, Marrucho IM, Oliveira J, Coutinho JAP (2009) J Phys Chem B 113:9304–9310

    Article  CAS  Google Scholar 

  44. Li CX, Han J, Wang Y, Yan YS, Xu XH, Pan JM (2009) Anal Chim Acta 653:178–183

    Article  CAS  Google Scholar 

  45. Box G, Behnken D (1960) Technometrics 2:455–475

    Article  Google Scholar 

  46. Marcus Y (1991) J Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

  47. Willauer HD, Huddleston JG, Rogers RD (2002) Ind Eng Chem Res 41:2591–2601

    Article  CAS  Google Scholar 

  48. Freire MG, Neves CMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IML, Santos MNBF, Coutinho JAP (2007) J Phys Chem B 111:13082–13089

    Article  CAS  Google Scholar 

  49. De Baere S, Baert K, Croubels S, De Busser J, De Wasch K, De Backer P (2000) Analyst 125:409–415

    Article  Google Scholar 

  50. Wei Y, Zhang M, Zhao Q, Feng YQ (2005) J Agric Food Chem 53:8468–8473

    Article  Google Scholar 

  51. Huang AX, Qiu N, Yuan D (2009) J Chromatogr A 1216:8240–8245

    Article  CAS  Google Scholar 

  52. Lin CY, Huang SD (2008) Anal Chim Acta 612:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21076098, 21206059 and 21207051), the Natural Science Foundation of Jiangsu Province (No. BK2010349 and BK2011529), China Postdoctoral Science Foundation funded project (No. 20110491352), Ph.D. Innovation Programs Foundation of Jiangsu Province (No. X2211_0584), Jiangsu Postdoctoral Science Foundation funded project (No. 1101036C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 50 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, J., Wang, Y., Liu, Y. et al. Ionic liquid-salt aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of sulfonamides in water and food. Anal Bioanal Chem 405, 1245–1255 (2013). https://doi.org/10.1007/s00216-012-6511-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6511-8

Keywords

  • Ionic liquid-salt aqueous two-phase extraction
  • Sulfonamides
  • High-performance liquid chromatography
  • Box–Behnken design
  • Water samples
  • Foods