Analytical and Bioanalytical Chemistry

, Volume 405, Issue 4, pp 1245–1255 | Cite as

Ionic liquid-salt aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of sulfonamides in water and food

  • Juan Han
  • Yun Wang
  • Yan Liu
  • Yanfang Li
  • Yang Lu
  • Yongsheng Yan
  • Liang Ni
Original Paper


Ionic liquid-salt aqueous two-phase extraction coupled with high-performance liquid chromatography with ultraviolet detection was developed for the determination of sulfonamides in water and food samples. In the procedure, the analytes were extracted from the aqueous samples into the ionic liquid top phase in one step. Three sulfonamides, sulfamerazine, sulfamethoxazole, and sulfamethizole were selected here as model compounds for developing and evaluating the method. The effects of various experimental parameters in extraction step were studied using two optimization methods, one variable at a time and Box–Behnken design. The results showed that the amount of sulfonamides did not have effect on the extraction efficiency. Therefore, a three-level Box–Behnken experimental design with three factors, which combined the response surface modeling, was used to optimize sulfonamides extraction. Under the most favorable extraction parameters, the detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 0.15–0.3 ng/mL and 0.5–1.0 ng/mL from spiked samples, respectively, which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Finally, the proposed method was successfully applied to the determination of sulfonamide compounds in different water and food samples and satisfactory recoveries of spiked target compounds in real samples were obtained.


Ionic liquid-salt aqueous two-phase extraction Sulfonamides High-performance liquid chromatography Box–Behnken design Water samples Foods 

Supplementary material

216_2012_6511_MOESM1_ESM.pdf (50 kb)
ESM 1(PDF 50 kb)


  1. 1.
    Zhang W, Duan C, Wang M (2011) Food Chem 126:779–785CrossRefGoogle Scholar
  2. 2.
    Li JD, Cai YQ, Shi YL, Mou SF, Jiang GB (2007) J Chromatogr A 1216:3372–3379Google Scholar
  3. 3.
    Wom SY, Lee CH, Chang HS, Kim SO, Lee SH, Kim DS (2011) Food Chem 22:1101–1107Google Scholar
  4. 4.
    Pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin (2009) Commission Regulation No. 37/2010, European Community. Off J Eur Union L 15: 1–72Google Scholar
  5. 5.
    The Maximum Residue Limit in Food of Animal Origin established by Ministry of Agriculture of P.R. China (2003) Chin J Vet Drug 37:15Google Scholar
  6. 6.
    Chiavarino B, Crestoni ME, Marzio AD, Fornarini S (1998) J Chromatogr B 706:269–277CrossRefGoogle Scholar
  7. 7.
    Reeves VB (1999) J Chromatogr B 723:127–137CrossRefGoogle Scholar
  8. 8.
    Wen Y, Li J, Zhang W, Chen L (2011) Electrophoresis 32:2131–2138CrossRefGoogle Scholar
  9. 9.
    Soto-Chinchilla JJ, García-Campaña AM, Gámiz-Gracia L (2007) Electrophoresis 28:4164–4172CrossRefGoogle Scholar
  10. 10.
    García-Galán MJ, Díaz-Cruz MS, Barceló D (2010) Talanta 81:355–366CrossRefGoogle Scholar
  11. 11.
    Pailler JY, Krein A, Pfister L, Hoffmann L, Guignard C (2009) Sci Total Environ 407:4736–4743CrossRefGoogle Scholar
  12. 12.
    Tolika EP, Samanidou VF, Papadoyannis IN (2011) J Sep Sci 34:1627–1635CrossRefGoogle Scholar
  13. 13.
    Chitescu CL, Nicolau AL, Csuma A, Moisoiu C (2011) Food Addit Contam Part A 28:1013–1020CrossRefGoogle Scholar
  14. 14.
    Tsai WH, Chuang HY, Chen HH, Wu YW, Cheng SH, Huang TC (2010) J Chromatogr A 1217:7812–7815CrossRefGoogle Scholar
  15. 15.
    Bernal J, Nozal MJ, Jiménez JJ, Martín MT, Sanz E (2009) J Chromatogr A 1216:7275–7280CrossRefGoogle Scholar
  16. 16.
    Shelver WL, Hakk H, Larsen GL, DeSutter TM, Casey FXM (2010) J Chromatogr A 1217:1273–1282CrossRefGoogle Scholar
  17. 17.
    Verzegnassi L, Savoy-Perroud MC, Stadler RH (2002) J Chromatogr A 977:77–87CrossRefGoogle Scholar
  18. 18.
    Maudens KE, Zhang GF, Lambert WE (2004) J Chromatogr A 1047:85–92CrossRefGoogle Scholar
  19. 19.
    Raich-Montiu J, Folch J, Compañó R, Granados M, Prat MD (2004) J Chromatogr A 1172:186–193Google Scholar
  20. 20.
    Font G, Juan-García A, Picó Y (2004) J Chromatogr A 1159:233–241Google Scholar
  21. 21.
    Lu Y, Shen Q, Dai Z, Zhang H, Wang H (2011) J Chromatogr A 1218:929–937CrossRefGoogle Scholar
  22. 22.
    Kishida K, Furusawa N (2001) J Chromatogr A 937:49–55CrossRefGoogle Scholar
  23. 23.
    Lu KH, Chen CY, Lee MR (2007) Talanta 72:1082–1087CrossRefGoogle Scholar
  24. 24.
    Xu W, Su S, Jiang P, Wang H, Dong X, Zhang M (2010) J Chromatogr A 1217:7198–7207CrossRefGoogle Scholar
  25. 25.
    Yu H, Tao Y, Chen D, Wang Y, Huang L, Peng D, Dai M, Liu Z, Wang X, Yuan Z (2011) J Chromatogr B 879:2653–2662CrossRefGoogle Scholar
  26. 26.
    Lopes RP, Reyes RC, Romero-González R, Frenich AG, Vidal JLM (2012) Talanta 89:201–208CrossRefGoogle Scholar
  27. 27.
    Xu X, Su R, Zhao X, Liu Z, Zhang Y, Li D, Li X, Zhang H, Wang Z (2011) Anal Chim Acta 707:92–99CrossRefGoogle Scholar
  28. 28.
    Guo X, Yin D, Peng J, Hu X (2012) J Sep Sci 35:452–458CrossRefGoogle Scholar
  29. 29.
    Albertsson PA (1986) Partitioning of cell particles and macromolecules. Wiley, New YorkGoogle Scholar
  30. 30.
    Walter H, Brooks DE, Fisher D (1985) Partitioning in aqueous two-phase systems. Academic, New YorkGoogle Scholar
  31. 31.
    Zaslavsky BY (1995) Aqueous two-phase partitioning, physical chemistry and bioanalytical applications. Marcel Dekker, New YorkGoogle Scholar
  32. 32.
    Gu Z, Glatz CE (2007) J Chromatogr B 845:38–45CrossRefGoogle Scholar
  33. 33.
    Su CK, Chiang BH (2006) Process Biochem 41:257–263CrossRefGoogle Scholar
  34. 34.
    Gomes GA, Azevedo AM, Aires-Barros MR, Prazeres DMF (2009) Sep Purif Technol 65:22–30CrossRefGoogle Scholar
  35. 35.
    Azevedo AM, Gomes AG, Rosa PAJ, Ferreira IF, Pisco AMMO, Aires-Barros MR (2009) Sep Purif Technol 65:14–21CrossRefGoogle Scholar
  36. 36.
    Mokhtarani B, Karimzadeh R, Amini MH, Manesh SD (2008) Bio Eng J 38:241–247CrossRefGoogle Scholar
  37. 37.
    Shibukawa M, Nakayama N, Hayashi T, Shibuya D, Endo Y, Kawamura S (2001) Anal Chim Acta 427:293–300CrossRefGoogle Scholar
  38. 38.
    Tong AJ, Dong JJ, Li LD (1999) Anal Chim Acta 390:125–131CrossRefGoogle Scholar
  39. 39.
    Han X, Armstrong DW (2007) Accounts Chem Res 40:1079–1086CrossRefGoogle Scholar
  40. 40.
    Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) J Am Chem Soc 125:6632–6633CrossRefGoogle Scholar
  41. 41.
    He C, Li S, Liu H, Li K, Liu F (2005) J Chromatogr A 1082:143–149CrossRefGoogle Scholar
  42. 42.
    Du Z, Yu YL, Wang JH (2007) Chem Eur J 13:2130–2137CrossRefGoogle Scholar
  43. 43.
    Ventura SPM, Neves CMSS, Freire MG, Marrucho IM, Oliveira J, Coutinho JAP (2009) J Phys Chem B 113:9304–9310CrossRefGoogle Scholar
  44. 44.
    Li CX, Han J, Wang Y, Yan YS, Xu XH, Pan JM (2009) Anal Chim Acta 653:178–183CrossRefGoogle Scholar
  45. 45.
    Box G, Behnken D (1960) Technometrics 2:455–475CrossRefGoogle Scholar
  46. 46.
    Marcus Y (1991) J Chem Soc Faraday Trans 87:2995–2999CrossRefGoogle Scholar
  47. 47.
    Willauer HD, Huddleston JG, Rogers RD (2002) Ind Eng Chem Res 41:2591–2601CrossRefGoogle Scholar
  48. 48.
    Freire MG, Neves CMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IML, Santos MNBF, Coutinho JAP (2007) J Phys Chem B 111:13082–13089CrossRefGoogle Scholar
  49. 49.
    De Baere S, Baert K, Croubels S, De Busser J, De Wasch K, De Backer P (2000) Analyst 125:409–415CrossRefGoogle Scholar
  50. 50.
    Wei Y, Zhang M, Zhao Q, Feng YQ (2005) J Agric Food Chem 53:8468–8473CrossRefGoogle Scholar
  51. 51.
    Huang AX, Qiu N, Yuan D (2009) J Chromatogr A 1216:8240–8245CrossRefGoogle Scholar
  52. 52.
    Lin CY, Huang SD (2008) Anal Chim Acta 612:37–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan Han
    • 1
  • Yun Wang
    • 2
  • Yan Liu
    • 2
  • Yanfang Li
    • 2
  • Yang Lu
    • 2
  • Yongsheng Yan
    • 2
  • Liang Ni
    • 2
  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations