Skip to main content
Log in

Exploring in vivo violacein biosynthesis by application of multivariate curve resolution on fused UV–VIS absorption, fluorescence, and liquid chromatography–mass spectrometry data

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the application of multivariate curve resolution-alternating least squares (MCR-ALS) is proposed for extracting information from multitechnique fused multivariate data (UV–VIS absorption, fluorescence, and liquid chromatography–mass spectrometry) gathered during the biosynthesis of violacein pigment. Experimental data sets were pretreated and arranged in a row-wise augmented data matrix before their chemometric investigation. Five different chemical components were resolved. Kinetic and spectral information about these components were obtained and their relationship with violacein biosynthesis was established. Three new chemical compounds with molar masses of 453, 465, and 479 u, until now not reported in the literature, were identified and proposed as intermediates in the biosynthesis of other indolocarbazoles. The precursor (tryptophan), one intermediate (deoxyviolacein), and the final product (violacein) of violacein biosynthesis were identified and characterized using the proposed approach. The chemometric procedure based on the MCR-ALS method has proved to be a powerful tool to investigate violacein biosynthesis and its application can be easily extended to the study of other bioprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duran N, Erazo S, Campos V (1983) An Acad Bras Ciencias 55:231–234

    CAS  Google Scholar 

  2. Duran N, Menck CF (2001) Crit Rev Microbiol 27:201–222

    Article  CAS  Google Scholar 

  3. Lichstein HC, Van de Sand VF (1945) J Infect Dis 76:47–51

    Article  CAS  Google Scholar 

  4. Duran N, Antonio RV, Haun M, Pilli RA (1994) World J Microbiol Biotechnol 10:686–690

    Article  CAS  Google Scholar 

  5. Leon LL, Miranda CC, de Souza AO, Duran N (2001) J Antimicrob Chemother 48:449–450

    Article  CAS  Google Scholar 

  6. Melo PS, Justo GZ, de Azevedo MB, Duran N, Haun M (2003) Toxicology 186:217–225

    Article  CAS  Google Scholar 

  7. Saraiva VS, Marshall JC, Cools-Lartigue J, Burnier MN Jr (2004) Melanoma Res 14:421–424

    Article  CAS  Google Scholar 

  8. Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Duran N, Peppelenbosch MP (2004) Blood 104:1459–1464

    Article  CAS  Google Scholar 

  9. Andrighetti-Frohner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR, Simoes CM (2003) Mem Inst Oswaldo Cruz 98:843–848

    Article  CAS  Google Scholar 

  10. Tobie WC (1934) J Bacteriol 29:223–227

    Google Scholar 

  11. DeMoss RD, Evans NR (1959) J Bacteriol 78:583–788

    CAS  Google Scholar 

  12. DeMoss RD, Evans NR (1960) J Bacteriol 79:729–733

    CAS  Google Scholar 

  13. Hoshino T, Kondo T, Uchiyama T, Ogasawara N (1987) Agric Biol Chem 51:965–968

    Article  CAS  Google Scholar 

  14. Hoshino T, Takano T, Hori S, Ogasawara N (1987) Agric Biol Chem 51:2733–2741

    Article  CAS  Google Scholar 

  15. Hoshino T, Ogasawara N (1990) Agric Biol Chem 54:2339–2346

    Article  CAS  Google Scholar 

  16. Pemberton JM, Vicent KM, Penfold RJ (1991) Curr Microbiol 22:355–358

    Article  CAS  Google Scholar 

  17. Hoshino T, Kojima Y, Kayashi T, Uchiyama T, Kaneko K (1993) Biosci Biotechnol Biochem 57:775–781

    Article  CAS  Google Scholar 

  18. Hoshino T, Hayashi T, Odajima T (1995) J Chem Soc Perkin Trans 1:1565–1571

    Article  Google Scholar 

  19. Hoshino T, Yamamoto M (1997) Biosci Biotechnol Biochem 61:2134–2136

    Article  CAS  Google Scholar 

  20. Ruhul Momen AZM, Hoshino T (2000) Biosci Biotechnol Biochem 64:539–549

    Article  Google Scholar 

  21. August PR, Grossman TH, Minor C, Draper MP, MacNeil IA, Pemberton JM, Call KM, Holt D, Osburne MS (2000) J Mol Microbiol Biotechnol 2:513–519

    CAS  Google Scholar 

  22. Howard-Jones AR, Walsh CT (2005) Biochemistry 44:15652–15663

    Article  CAS  Google Scholar 

  23. Sánchez C, Braña AF, Méndez C, Salas JA (2006) ChemBioChem 7:1231–1240

    Article  Google Scholar 

  24. Balibar CJ, Walsh CT (2006) Biochemistry 45:15444–15457

    Article  CAS  Google Scholar 

  25. Shinoda K, Hasegawa T, Sato H, Shinozaki M, Kuramoto H, Takamiya Y, Sato T, Nikaidou N, Watanabe T, Hoshino T (2007) Chem Commun 28:4140–4142

    Article  Google Scholar 

  26. Jiang P-X, Wang H-S, Zhang C, Lou K, Xing X-H (2010) Appl Microbiol Biotechnol 86:1077–1088

    Article  CAS  Google Scholar 

  27. Dantas C, Volpe PLO, Duran N, Ferreira MMC (2012) J Braz Chem Soc (in press)

  28. Perá-Trepat E, Tauler R (2006) J Chromatogr A 1131:85–96

    Article  Google Scholar 

  29. Navea S, Tauler R, de Juan A (2006) Anal Chem 78:4768–4778

    Article  CAS  Google Scholar 

  30. Cutler P, Gemperline PJ, de Juan A (2009) Anal Chim Acta 632:52–62

    Article  CAS  Google Scholar 

  31. Eilers PHC (2004) Anal Chem 76:404–411

    Article  CAS  Google Scholar 

  32. Tauler R, Kowalski B (1993) Anal Chem 65:2040–2047

    Article  CAS  Google Scholar 

  33. Tauler R, Smilde A, Kowalski B (1995) J Chemom 9:31–58

    Article  CAS  Google Scholar 

  34. Gampp H, Maeder M, Meyer CH, Zuberbuhler AD (1985) Talanta 32:1133–1139

    Article  CAS  Google Scholar 

  35. Gampp H, Maeder M, Meyer CH, Zuberbuhler AD (1986) Talanta 33:943–951

    Article  CAS  Google Scholar 

  36. Tauler R, Izquierdo-Ridorsa A, Casassas E (1993) Chemom Intell Lab Syst 18:293–300

    Article  CAS  Google Scholar 

  37. de Juan A, Maeder M, Martínez M, Tauler R (2000) Chemom Intell Lab Syst 54:123–141

    Article  Google Scholar 

  38. Jaumont J, Gargallo R, de Juan A, Tauler R (2005) Chemom Intell Lab Syst 76:101–110

    Article  Google Scholar 

  39. de Juan A, Tauler R (2003) Anal Chim Acta 500:195–210

    Article  Google Scholar 

  40. Tauler R, Marques I, Casassas E (1998) J Chemom 12:55–75

    Article  CAS  Google Scholar 

  41. Amrhein M, Srinivasan B, Bonvin D, Schumacher MM (1996) Chemom Intell Lab Syst 33:17–33

    Article  CAS  Google Scholar 

  42. Rettori D, Durán N (1998) World J Microbiol Biotechnol 14:685–690

    Article  CAS  Google Scholar 

  43. Ryan KS, Drennan CL (2009) Chem Biol 16:351–364

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CNPq’s sandwich doctorate program for financial support and Prof. Carol H. Collins for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia Miguel Castro Ferreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantas, C., Tauler, R. & Ferreira, M.M.C. Exploring in vivo violacein biosynthesis by application of multivariate curve resolution on fused UV–VIS absorption, fluorescence, and liquid chromatography–mass spectrometry data. Anal Bioanal Chem 405, 1293–1302 (2013). https://doi.org/10.1007/s00216-012-6507-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6507-4

Keywords

Navigation