Skip to main content
Log in

Negative ion tandem mass spectrometry of prenylated fungal metabolites and their derivatives

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Liquid chromatography negative ion electrospray ionisation tandem mass spectrometry has been used for characterisation of naturally occurring prenylated fungal metabolites and synthetic derivatives. The fragmentation studies allow an elucidation of the decomposition pathways for these compounds. It could be shown, that the prenyl side chain is degraded by successive radical losses of C5 units. Both the benzoquinones and the phenolic derivatives display significant key ions comprising the aromatic ring. In some cases, the formation of significant oxygen-free key ions could be evidenced by high-resolution MS/MS measurements. Furthermore, the different types of basic skeletons, benzoquinones and phenol type as well as cyclic prenylated compounds, can be differentiated by their MS/MS behaviour.

Fruiting bodies of Suillus bovinus, the structure of boviquinone-4 and its negative ion MS2 spectrum

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Cornforth JW (1968) Terpenoid biosynthesis. Chem Ber 4:102–106

    CAS  Google Scholar 

  2. Geris R, Simpson TJ (2009) Meroterpenoids produced by fungi. Nat Prod Rep 26:1063–1094

    Article  CAS  Google Scholar 

  3. Simpson TJ (1987) Applications of multinuclear NMR to structural and biosynthetic studies of polyketide microbial metabolites. Chem Soc Rev 16:123–160

    Article  CAS  Google Scholar 

  4. Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). In: Zechmeister L, Herz W, Grisebach H, Kirby GW, Tamm CH (eds) Progress in the chemistry of organic natural products, vol. 51. Springer, Wien

    Google Scholar 

  5. Beaumont PC, Edwards RL (1969) Constituents of the higher fungi. Part IX. Bovinone, 2,5-dihydroxy-3-geranylgeranyl-1,4-benzoquinone from Boletus (Suillus) bovinus (Linn. ex Fr.) Kuntze. J Chem Soc Perkin 1 18:2398–2403

    CAS  Google Scholar 

  6. Beaumont PC, Edwards RL (1971) Constituents of the higher fungi. Part XI. Boviquinone-3, (2,5-dihydroxy-3-farnesyl-1,4-benzoquinone), diboviquinone-3,4, methylenediboviquinone-3,3, and xerocomic acid from Gomphidius rutilus Fr. and diboviquinone-4,4 from Boletus (Suillus) bovinus (Linn. ex Fr.) Kuntze. J Chem Soc Perkin 1 14:2582–2585

    CAS  Google Scholar 

  7. Steglich W, Esser F, Pils I (1971) Helveticon, ein Benzochinon-Derivat vom Bovinon-Typ aus Chroogomphus helveticus und Ch. rutilus. Z. Naturforsch 26b:336

    Google Scholar 

  8. Besl H, Hecht HJ, Luger P, Pasupathy V, Steglich W (1975) Pilzpigmente, XXIII. Tridentochinon, ein [13](3,6)Benzofuranophan aus Suillus tridentinus (Boletales). Chem Ber 108:3675–3691

    Article  CAS  Google Scholar 

  9. Jägers E, Pasupathy V, Hovenbitzer A, Steglich W (1986) Suillin, ein charakteristischer Inhaltsstoff von Röhrlingen der Gattung Suillus (Boletales) Z. Naturforsch 41b:645–648

    Google Scholar 

  10. Besl H, Bresinsky A (1997) Chemosystematics of Suillaceae and Gomphidiaceae (suborder Suillineae). Pl Syst Evol 206:223–242

    Article  Google Scholar 

  11. Tringali C, Piattelli M, Geraci C, Nicolosi G (1989) Antimicrobial tetraprenylphenols from Suillus granulatus. J Nat Prod 52:941–947

    Article  CAS  Google Scholar 

  12. Hayashi T, Kanetoshi A, Ikura M, Shirahama H (1989) Bolegrevilol, a new lipid peroxidation inhibitor from the edible mushroom Suillus grevillei. Chem Pharm Bull 37:1424–1425

    Article  CAS  Google Scholar 

  13. Kukovinets OS, Zainullin RA, Kislitsyn MI (2006) Natural arylterpenes and their biological activity. Chem Nat Comp 42:1–15

    Article  CAS  Google Scholar 

  14. Hirata Y, Nakanishi K (1950) Grifolin, an antibiotic from a Basidiomycete. J Biol Chem 184:135

    CAS  Google Scholar 

  15. Vrkoč I, Buděšinský M, Dolejš L (1977) Phenolic meroterpenoids from the Basidiomycete Albatrellus ovinus. Phytochemistry 16:1409–1411

    Article  Google Scholar 

  16. Besl H, Hoefle G, Jendrny B, Jägers E, Steglich W (1977) Pilzpigmente, XXXI. Farnesylphenole aus Albatrellus–Arten (Basidiomycetes). Chem Ber 110:3770–3776

    Article  CAS  Google Scholar 

  17. Zechlin L, Wolf M, Steglich W, Anke T (1981) Cristatsäure, ein modifiziertes Farnesylphenol aus Fruchtkörpern von Albatrellus cristatus. Liebigs Ann Chem 12:2099–2105

    Article  Google Scholar 

  18. Hashimoto T, Quang DN, Nukada M, Asakawa Y (2005) Isolation, synthesis and biological activity of grifolic acid derivatives from inedible mushroom Albatrellus dispansus. Heterocycles 65:2431–2439

    Article  CAS  Google Scholar 

  19. Nukata M, Hashimoto T, Yamamoto I, Iwasaki N, Tanaka M, Asakawa Y (2002) Neogrifolin derivatives possessing anti-oxidative activity from the mushroom Albatrellus ovinus. Phytochemistry 59:731–737

    Article  CAS  Google Scholar 

  20. Misasa H, Matsui Y, Uehara H, Tanaka H, Ishihara M, Shibata H (1992) Tyrosinase inhibitors from Albatrellus confluens. Biosci Biotechnol Biochem 56:1660

    Article  CAS  Google Scholar 

  21. Yang XL, Qin C, Wang F, Dong ZJ, Liu JK (2008) A new meroterpenoid pigment from the Basidiomycete Albatrellus confluens. Chem Biodivers 5:484–489

    Article  CAS  Google Scholar 

  22. Hellwig V, Nopper R, Mauler F, Freitag J, Ji-Kai L, Zhi-Hui D, Stadler M (2002) Activities of prenylphenol derivatives from fruitbodies of Albatrellus ssp. on the human and rat vanilloid receptor 1 (VR1) and characterisation of the novel natural product, confluentin. Arch Pharm Pharm Med Chem 2:119–126

    Google Scholar 

  23. Lang M, Mühlbauer A, Gräf C, Beyer J, Lang-Fugmann S, Polborn K, Steglich W (2008) Studies on the structure and biosynthesis of tridentoquinone and related meroterpenoids from the mushroom Suillus tridentinus (Boletales). Eur J Org Chem 2008:816–825

    Article  Google Scholar 

  24. Schwarz H, Pasupathy V, Steglich W (1976) Pilzpigmente. XXV. Massenspektrometrische Untersuchung polyisoprenoider Ansabenzochinone. Org Mass Spectrom 11:472–478

    Article  CAS  Google Scholar 

  25. Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J (2001) Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom 12:707–715

    Article  CAS  Google Scholar 

  26. Lübken T, Arnold N, Wessjohann LA, Böttcher C, Schmidt J (2006) Analysis of fungal cyclopentenone derivatives from Hygrophorus spp. by liquid chromatography/electrospray-tandem mass spectrometry. J Mass Spectrom 41:361–371

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Prof. Dr. Dr. h.c. Wolfgang Steglich and co-workers (Ludwig-Maximilians-University, Munich) for kindly providing the compounds investigated. We thank Petra Majovsky for technical assistance. Ramona Heinke is gratefully acknowledged to the Studienstiftung des Deutschen Volkes for a grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 123kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinke, R., Arnold, N., Wessjohann, L. et al. Negative ion tandem mass spectrometry of prenylated fungal metabolites and their derivatives. Anal Bioanal Chem 405, 177–189 (2013). https://doi.org/10.1007/s00216-012-6498-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6498-1

Keywords

Navigation