Sensitive redox speciation of neptunium by CE–ICP–MS

Abstract

Capillary electrophoresis (CE) was used to separate the neptunium oxidation states Np(IV) and Np(V), which are the only oxidation states of Np that are stable under environmental conditions. The CE setup was coupled to an inductively coupled plasma mass spectrometer (Agilent 7500ce) using a Mira Mist CE nebulizer and a Scott-type spray chamber. The combination of the separation capacity of CE with the detection sensitivity of inductively coupled plasma mass spectrometry (ICP-MS) allows identification and quantification of Np(IV) and Np(V) at the trace levels expected in the far field of a nuclear waste repository. Limits of detection of 1 × 10-9 and 5 × 10-10 mol L-1 for Np(IV) and Np(V), respectively, were achieved, with a linear range from 10-9 to 10-6 mol L-1. The method was applied to study the redox speciation of the Np remaining in solution after interaction of 5 × 10-7 mol L-1 Np(V) with Opalinus Clay. Under mildly oxidizing conditions, a Np sorption of 31% was found, with all the Np remaining in solution being Np(V). A second sorption experiment performed in the presence of Fe2+ led to complete sorption of the Np onto the clay. After desorption with HClO4, a mixture of Np(IV) and Np(V) was found in solution by CE–ICP–MS, indicating that some of the sorbed Np had been reduced to Np(IV) by Fe2+.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Hoth P, Wirth H, Reinhold K, Bräuer V, Krull P, Feldrappe H (2007) Endlagerung radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands. Bundesanstalt für Geowisschenschaften und Rohstoffe, Hanover

    Google Scholar 

  2. 2.

    NAGRA (2002) Project Opalinus Clay-safety report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste, and long-lived intermediate-level waste. Technical report NTB 02–05. National Cooperative for the Disposal of Radioactive Waste, Wettingen

  3. 3.

    OECD (2002) Safety of geological disposal of high-level and long-lived radioactive waste in France. NEA no. 6178. OECD-NEA, Le Seine Saint-Germain

  4. 4.

    Honty M, De Craen M (2009) Mineralogy of the Boom Clay in the Essen-1 borehole. External report SCK CEN-ER-87. Belgian Nuclear Research Centre, Mol

  5. 5.

    Gompper K (2000) Zur Abtrennung langlebiger Radionuklide. Radioaktivität und Kernenergie. Forschungszentrum Karlsruhe, Karlsruhe

    Google Scholar 

  6. 6.

    Lieser KH, Mühlenweg M (1988) Radiochim Acta 43:27–35

    CAS  Google Scholar 

  7. 7.

    Kaszuba JP, Runde WH (1999) Environ Sci Technol 33:4427–4433

    Article  CAS  Google Scholar 

  8. 8.

    Neck V, Kim JI, Seidel BS, Marquardt CM, Dardenne K, Jensen MP, Hauser W (2001) Radiochim Acta 89:439–446

    Article  CAS  Google Scholar 

  9. 9.

    Sjoblom A, Hindeman JC (1951) J Am Chem Soc 73:1744–1751

    Article  CAS  Google Scholar 

  10. 10.

    Sachs S, Schmeide K, Reich T, Brendler V, Heise KH, Bernhard G (2005) Radiochim Acta 93:17–25

    Article  CAS  Google Scholar 

  11. 11.

    Schmeide K, Reich T, Sachs S, Brendler V, Heise KH, Bernhard G (2005) Radiochim Acta 93:187–196

    Article  CAS  Google Scholar 

  12. 12.

    Neck V, Kim JI (2001) Radiochim Acta 89:1–16

    Article  CAS  Google Scholar 

  13. 13.

    Kuczewski B, Marquardt CM, Seibert A, Geckeis H, Kratz JV, Trautmann N (2003) Anal Chem 75:6769–6774

    Article  CAS  Google Scholar 

  14. 14.

    Ambard C, Delorme A, Baglan N, Aupiais J, Pointurier F, Madic C (2005) Radiochim Acta 93:665–673

    Article  CAS  Google Scholar 

  15. 15.

    Topin S, Aupiais J, Moisy P (2009) Electrophoresis 30:1747–1755

    Article  CAS  Google Scholar 

  16. 16.

    Topin S, Aupiais J, Baglan N, Vercouter T, Vitorge P, Moisy P (2009) Anal Chem 81:5354–5363

    Article  CAS  Google Scholar 

  17. 17.

    Topin S, Aupiais J, Baglan N (2010) Radiochim Acta 98:71–75

    Article  CAS  Google Scholar 

  18. 18.

    Wedler G (1985) Lehrbuch der physikalischen Chemie. VCH, Weinheim

    Google Scholar 

  19. 19.

    Yanes EG, Miller-Ihli NJ (2004) Spectrochim Acta B 59:883–890

    Article  Google Scholar 

  20. 20.

    Yanes EG, Miller-Ihli NJ (2005) Spectrochim Acta B 60:555–561

    Article  Google Scholar 

  21. 21.

    Møller C, Stürup S, Hansen HR, Gammelgaard B (2009) J Anal At Spectrom 24:1208–1212

    Article  Google Scholar 

  22. 22.

    Fröhlich DR, Amayri S, Drebert J, Reich T (2011) Radiochim Acta 99:71–77

    Article  Google Scholar 

  23. 23.

    Pearson FJ (1998) Opalinus Clay experimental water: A1 type, version 980318. PSI technical report TM-44-98-07. Paul Scherrer Institut, Villigen

  24. 24.

    Takao K, Takao S, Scheinost AC, Bernhard G, Hennig C (2009) Inorg Chem 48:8803–8810

    Article  CAS  Google Scholar 

  25. 25.

    Landers JP (1997) Handbook of capillary electrophoresis. CRC, Boca Raton

    Google Scholar 

  26. 26.

    Wojdyr M (2010) J Appl Crystallogr 43:1126–1128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG graduate school 826) and to BMWi (contracts 02E10166 and 02E10981) for funding. Support from the German Academic Exchange Service (DAAD-RISE program) for K.M. is also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nils Stöbener.

Additional information

Published in the topical collection Modern Aspects on Elemental Speciation with guest editors Thorsten Hoffmann and Klaus G. Heumann.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 215 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stöbener, N., Amayri, S., Gehl, A. et al. Sensitive redox speciation of neptunium by CE–ICP–MS. Anal Bioanal Chem 404, 2143–2150 (2012). https://doi.org/10.1007/s00216-012-6423-7

Download citation

Keywords

  • Capillary electrophoresis
  • Inductively coupled plasma mass spectrometry
  • Neptunium
  • Actinides
  • Speciation
  • “Hyphenated” techniques
  • Mira Mist CE nebulizer
  • Opalinus Clay
  • Sorption