Skip to main content

Advertisement

Log in

Single nucleotide polymorphism detection by optical DNA-based sensing coupled with whole genomic amplification

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The work presented here deals with the optimization of a strategy for detection of single nucleotide polymorphisms based on surface plasmon resonance imaging. First, a sandwich-like assay was designed, and oligonucleotide sequences were computationally selected in order to study optimized conditions for the detection of the rs1045642 single nucleotide polymorphism in the gene ABCB1. Then the strategy was optimized on a surface plasmon resonance imaging biosensor using synthetic DNA sequences in order to evaluate the best conditions for the detection of a single mismatching base. Finally, the assay was tested on DNA extracted from human blood which was subsequently amplified using a whole genome amplification kit. The direct detection of the polymorphism was successfully achieved. The biochip was highly regenerable and reusable for up to 20 measurements. Furthermore, coupling these promising results with the multiarray assay, we can foresee applying this biosensor in clinical research extended to concurrent analysis of different polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Schafer AJ, Hawkins JR (1998) Nat Biotechnol 16:33–39

    Article  CAS  Google Scholar 

  2. Savonarola A, Palmirotta R, Guadagni F, Silvestris F (2012) Pharmacogenomics J. doi:10.1038/tpj.2012.28

  3. Su X, Robelek R, Wu Y, Wang G, Knoll W (2004) Anal Chem 76:489–494

    Article  CAS  Google Scholar 

  4. Wang J, Rivasa, Cai X, Chicharro M, Parrado C, Dontha N, Begleiter A, Mowat M, Palecek E, Nielsen PE (1997) Anal Chim Acta 344:111–118

    Article  CAS  Google Scholar 

  5. Nakayama M, Ihara T, Nakano K, Maeda M (2002) Talanta 56:857–866

    Article  CAS  Google Scholar 

  6. Healey BG, Matson RS, Walt DR (1997) Anal Biochem 251:270–279

    Article  CAS  Google Scholar 

  7. Wu ZS, Jiang JH, Shen GL, Yu RQ (2007) Hum Mut 28(6):630–637

    Article  CAS  Google Scholar 

  8. Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Nucleic Acids Res 27(24):4830–4837

    Article  CAS  Google Scholar 

  9. Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Tamanini A, Cabrini G (2010) Biochem Pharm 80:1887–1894

    Article  CAS  Google Scholar 

  10. Baum L, Ng A, Keung Leung W (2005) Mol Cell Probes 19:163–168

    Article  CAS  Google Scholar 

  11. Wilson PK, Jiang T, Minunni ME, Turner APF, Mascini M (2005) Biosens Bioelectron 20:2310–2313

    Article  CAS  Google Scholar 

  12. Babic I, Andrew SE, Jirik FR (1996) Mut Res 372:87–96

    Article  CAS  Google Scholar 

  13. Gotoh M, Hasebe M, Ohira T, Hasegawa Y, Shinohara Y, Sota H, Nakao J, Tosu M (1997) Gen Anal Biom Eng 14:47–50

    Article  CAS  Google Scholar 

  14. Behrensdorf HA, Pignot M, Windhab N, Kappel A (2002) Nucleic Acids Res 30(14):e64

    Article  Google Scholar 

  15. Goodrich TT, Lee HJ, Corn RM (2004) Anal Chem 76:6173–6178

    Article  CAS  Google Scholar 

  16. Kin Lao AI, Su X, Aung KMM (2009) Biosens Bioelectron 24:1717–1722

    Article  Google Scholar 

  17. Zanoli LM, D’Agata R, Spoto G (2012) Anal Bioanal Chem 402:1759–1771

    Article  CAS  Google Scholar 

  18. D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, Spoto G (2010) Biosens Bioelectron 25:2095–2100

    Article  Google Scholar 

  19. D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R (2011) Anal Chem 83(22):8711–8717

    Article  Google Scholar 

  20. Balogh MK, Børsting C, Sanchez-Diz P, Thacker C, Syndercombe-Court D, Carracedo A, Morling N, Schneider PM (2006) Int Congr Ser 1288:725–727

    Article  CAS  Google Scholar 

  21. Frumkin D, Wasserstrom A, Itzkovitz S, Harmelin A, Rechavi G, Shapiro E (2008) BMC Biotechnol 20:8–17

    Google Scholar 

  22. Sharma V, Kaul S, Al-Hazzani A, Prabha TS, Rao PPKM, Dadheech S, Jyothy A, Munshi A (2012) J Neurol Sci 315(1–2):72–76

    Article  CAS  Google Scholar 

  23. Wang J, Wang B, Bi J, Li K, Di J (2012) J Cancer Res Clin Oncol 138(6):979–989

    Article  CAS  Google Scholar 

  24. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y, Hosoi Y, Takekita Y, Mandelli L, Azuma J, Kinoshita T (2008) Progr Neuropsychopharmacol Biol Psychiatr 32(2):398–404

    Article  CAS  Google Scholar 

  25. Drain S, Flannely L, Drake MB, Kettle P, Orr N, Bjourson AJ, Catherwood MA, Alexander HD (2011) Leuk Res 35(11):1457–1463

    Article  CAS  Google Scholar 

  26. Garcia-Donas J, Esteban E, Leandro-Garcia LJ, Castellano DE, del Alba AG, Climent MA, Arranz JA, Gallardo E, Puente J, Bellmunt J, Mellado B, Martinez E, Moreno F, Font A, Robledo M, Rodriguez-Antona C (2011) Lancet Oncol 12(12):1143–1150

    Article  CAS  Google Scholar 

  27. Zhang LN, Yesupriya A, Hu DJ, Chang MH, Dowling NF, Ned RM, Udhayakumar V, Lindegren ML, Khudyakov Y (2012) Hepatology 55(4):1008–1018

    Article  CAS  Google Scholar 

  28. Wernersson R, Juncker AS, Nielsen HB (2007) Nat Protoc 2(11):2677–2691

    Article  CAS  Google Scholar 

  29. Ermini ML, Scarano S, Bini R, Banchelli M, Berti D, Mascini M, Minunni M (2011) Biosens Bioelectron 26:4785–4790

    Article  CAS  Google Scholar 

  30. Scarano S, Scuffi C, Mascini M, Minunni M (2010) Biosens Bioelectron 26:1380–1385

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Fondazione ARPA 2010, with “Progetto Dolore”, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Minunni.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 675 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermini, M.L., Mariani, S., Scarano, S. et al. Single nucleotide polymorphism detection by optical DNA-based sensing coupled with whole genomic amplification. Anal Bioanal Chem 405, 985–993 (2013). https://doi.org/10.1007/s00216-012-6345-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6345-4

Keywords