Skip to main content
Log in

A method based on microextraction by packed sorbent-programmed temperature vaporizer–fast gas chromatography–mass spectrometry for the determination of aromatic amines in environmental water samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report a sensitive method for the determination of 15 aromatic amines in environmental water samples. They have been included in the list of priority pollutants in surface water by the European Union. The method is based on analyte enrichment using microextraction by packed sorbent (MEPS) and later analysis using programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV-GC-MS). All MEPS steps were carried out manually. The detection limits were of the order of nanograms per liter for most of the compounds. The results were compared with those obtained without MEPS using the method exclusively based on direct injection of the sample into the PTV-GC-MS. External calibration in ultrapure water was used in the determination of the compounds studied in five types of water samples (sea, river, tap, influent, and effluent waste water) since no significant matrix effect was found. The results obtained can be considered highly satisfactory and they revealed the presence of aniline in the sea and the influent and effluent waste water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pinheiro HM, Touraud E, Thomas O (2004) Dyes Pigments 61:121–139

    Article  CAS  Google Scholar 

  2. Directive 2006/11/EC (2006) OJ L 64:52–59

    Google Scholar 

  3. Schmidt TC, Less M, Haas R, von Löw E, Steinbach K, Strork G (1998) J Chromatogr A 810:161–172

    Article  CAS  Google Scholar 

  4. Less M, Schmidt TC, von Löw E, Strork G (1998) J Chromatogr A 810:173–182

    Article  CAS  Google Scholar 

  5. Lacorte S, Guiffard I, Fraisse D, Barceló D (2000) Anal Chem 72:1430–1440

    Article  CAS  Google Scholar 

  6. Mishra S, Singh V, Jain A, Verma KK (2001) Analyst 126:1663–1668

    Article  CAS  Google Scholar 

  7. Jurado-Sánchez B, Ballesteros E, Gallego M (2009) Talanta 79:613–620

    Article  Google Scholar 

  8. Müller L, Fattore E, Benfenati E (1997) J Chromatogr A 791:221–230

    Article  Google Scholar 

  9. Van Doorn H, Grabanski CB, Miller DJ, Hawthorne SB (1998) J Chromatogr A 829:223–233

    Article  Google Scholar 

  10. Chang W, Sung Y, Huang S (2003) Anal Chim Acta 495:109–122

    Article  CAS  Google Scholar 

  11. Zimmermann T, Ensinger WJ, Schmidt TC (2004) Anal Chem 76:1028–1038

    Article  CAS  Google Scholar 

  12. Sharma N, Jain A, Verma KK (2011) Anal Methods 3:970–976

    Article  CAS  Google Scholar 

  13. Huang X, Qiu N, Yuan D, Lin Q (2009) J Chromatogr A 1216:4354–4360

    Article  CAS  Google Scholar 

  14. Zhu L, Tay CB, Lee HK (2002) J Chromatogr A 963:231–237

    Article  CAS  Google Scholar 

  15. Peng J, Liu J, Jiang G, Tai C, Huang M (2005) J Chromatogr A 1072:3–6

    Article  CAS  Google Scholar 

  16. Sarafraz-Yazdi A, Es’haghi Z (2005) J Chromatogr A 1082:136–142

    Article  Google Scholar 

  17. Sarafraz-Yazdi A, Es’haghi Z (2006) Chromatographia 63:563–569

    Article  CAS  Google Scholar 

  18. Reddy-Noone K, Jain A, Verma KK (2007) Talanta 73:684–691

    Article  CAS  Google Scholar 

  19. Zhou Q, Jiang G, Liu J, Cai Y (2004) Anal Chim Acta 509:55–62

    Article  CAS  Google Scholar 

  20. Akyüz M, Ata Ş (2006) J Chromatogr A 1129:88–94

    Article  Google Scholar 

  21. Farré M, Pérez S, Gonçalves C, Alpendurada MF, Barceló D (2010) Trends Anal Chem 29:1347–1362

    Article  Google Scholar 

  22. Duan C, Shen Z, Wu D, Guan Y (2011) Trends Anal Chem 30:1568–1574

    Article  CAS  Google Scholar 

  23. Andel-Rehim M (2004) J Chromatogr B 801:317–321

    Article  Google Scholar 

  24. El-Beqqali A, Abdel-Rehim M (2007) J Sep Sci 30:2501–2505

    Article  CAS  Google Scholar 

  25. De Andrés F, Zougagh M, Castañeda G, Sánchez-Rojas JL, Ríos A (2011) Talanta 83:1562–1567

    Article  Google Scholar 

  26. Saracino MA, Lazzara G, Prugnoli B, Raggi MA (2011) J Chromatogr A 1218:2153–2159

    Article  CAS  Google Scholar 

  27. El-Beqqali A, Kussak A, Abdel-Rehim M (2006) J Chromatogr A 1114:234–238

    Article  CAS  Google Scholar 

  28. Prieto A, Schrader S, Moeder M (2010) J Chromatogr A 1217:6002–6011

    Article  CAS  Google Scholar 

  29. Grueiro Noche G, Fernández Laespada ME, Pérez Pavón JL, Moreno Cordero B, Muniategui Lorenzo S (2011) J Chromatogr A 1218:9390–9396

    Article  Google Scholar 

  30. Singh V, Gupta M, Jain A, Verma KK (2003) J Chromatogr A 1010:243–253

    Article  CAS  Google Scholar 

  31. Sarasa J, Roche MP, Ormad MP, Gimeno E, Puig A, Ovelleiro JL (1998) Water Res 32:2721–2727

    Article  CAS  Google Scholar 

  32. Asthana A, Bose D, Durgbanshi A, Sanghi SK, Kok WT (2000) J Chromatogr A 895:197–203

    Article  CAS  Google Scholar 

  33. Zhang J, Wu X, Zhang W, Xu L, Chen G (2008) Electrophoresis 29:796–802

    Article  CAS  Google Scholar 

  34. Enhanced MSD ChemStation (2008) version E.02.00493. Agilent Technologies: Santa Clara, CA

  35. Matisova E, Dömötörová M (2003) J Chromatogr A 1000:199–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the DGI (Project CTQ2010-17514/BQU) and the Consejería de Educación y Cultura of the Junta de Castilla y León (GR87) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Pérez Pavón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Nogal Sánchez, M., Pérez Sappó, C., Pérez Pavón, J.L. et al. A method based on microextraction by packed sorbent-programmed temperature vaporizer–fast gas chromatography–mass spectrometry for the determination of aromatic amines in environmental water samples. Anal Bioanal Chem 404, 2007–2015 (2012). https://doi.org/10.1007/s00216-012-6303-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6303-1

Keywords

Navigation