Skip to main content

Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors

Abstract

Methodology for the functionalization of silicon-based materials employed for the development of photonic label-free nanobiosensors is reported. The studied functionalization based on organosilane chemistry allowed the direct attachment of biomolecules in a single step, maintaining their bioavailability. Using this immobilization approach in probe microarrays, successful specific detection of bacterial DNA is achieved, reaching hybridization sensitivities of 10 pM. The utility of the immobilization approach for the functionalization of label-free nanobiosensors based on photonic crystals and ring resonators was demonstrated using bovine serum albumin (BSA)/anti-BSA as a model system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Wallace RW (1997) Mol Med Today 3:384–389

    CAS  Article  Google Scholar 

  2. Lockhart DJ, Winzeler EA (2000) Nature 405:827–836

    CAS  Article  Google Scholar 

  3. Wang Y, Vaidya B, Farquar HD, Stryjewski W, Hammer RP, McCarley RL, Sope SA (2003) Anal Chem 75:1130–1140

    CAS  Article  Google Scholar 

  4. Hopwood AJ, Hurth C, Yang J, Cai Z, Moran N, Lee-Edghill JG, Nordquist A, Lenigk R, Estes MD, Haley JP, McAlister CR, Chen X, Brooks C, Smith S, Elliott K, Koumi P, Zenhausern F, Tully G (2010) Anal Chem 82:6991–6999

    CAS  Article  Google Scholar 

  5. Lettieri T (2006) Environ Health Perspect 114:4–9

    CAS  Google Scholar 

  6. Villeneuve DJ, Parissenti AM (2004) Curr Top Med Chem 4:1329–1345

    CAS  Article  Google Scholar 

  7. Debouck C, Goodfellow PN (1999) Nat Genet 21:48–50

    CAS  Article  Google Scholar 

  8. Sendroiu IE, Gifford LK, Lupták A, Corn RM (2011) J Am Chem Soc 133:4271–4273

    CAS  Article  Google Scholar 

  9. Palchetti I, Mascini M (2008) Analyst 133:846–854

    CAS  Article  Google Scholar 

  10. Fan XD, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Anal Chim Acta 620:8–26

    CAS  Article  Google Scholar 

  11. Luchansky MS, Bailey RC (2012) Anal Chem 84:793–821

    CAS  Article  Google Scholar 

  12. Zourob M, Lakhtakia A (2010) Optical guided-wave chemical and biosensors II, chap 1. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  13. Hunta HK, Armani AM (2010) Nanoscale 2:1544–1559

    Article  Google Scholar 

  14. Mandal S, Goddard JM, Erickson D (2009) Lab Chip 9:2924–2932

    CAS  Article  Google Scholar 

  15. Washburn AL, Gunn LC, Bailey RC (2009) Anal Chem 81:9499–9506

    CAS  Article  Google Scholar 

  16. De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R (2007) Opt Express 15:7610–7615

    Article  Google Scholar 

  17. Ramachandran A, Wang S, Clarke J, Ja SJ, Goad D, Wald L, Flood EM, Knobbe E, Hryniewicz JV, Chu ST, Gill D, Chen W, King O, Little BE (2008) Biosens. Bioelectron 23:939–944

    CAS  Article  Google Scholar 

  18. Claes T, Molera JG, De Vos K, Schacht E, Baets R, Bienstman P (2009) IEEE Photon J 1:197–204

    Article  Google Scholar 

  19. Sagiv J (1980) J Am Chem Soc 102:92–98

    CAS  Article  Google Scholar 

  20. George S, Block ID, Jones SI, Mathias PC, Chaudhery V, Vuttipittayamongkol P, Wu HY, Vodkin LO, Cunningham BT (2010) Anal Chem 82:8551–8557

    CAS  Article  Google Scholar 

  21. Huang CS, George S, Lu M, Chaudhery V, Tan R, Zangar RC, Cunningham BT (2011) Anal Chem 83:1425–1430

    CAS  Article  Google Scholar 

  22. Hermanson GT (2008) Bioconjugate techniques, chap 13. Academic, New York

    Google Scholar 

  23. Zhu HY, White IM, Suter JD, Fan XD (2008) Biosens Bioelectron 24:461–466

    CAS  Article  Google Scholar 

  24. Zhu H, Dale PS, Caldwell CW, Fan X (2009) Anal Chem 81:9858–9865

    CAS  Article  Google Scholar 

  25. Qavi AJ, Bailey RC (2010) Angew Chem Int Ed 49:4608–4611

    CAS  Article  Google Scholar 

  26. Byeon JY, Limpoco FT, Bailey RC (2010) Langmuir 26:15430–15435

    CAS  Article  Google Scholar 

  27. White IM, Zhu H, Suter JD, Fan X, Zourob M (2009) In: Rasooly A, Herold KE (eds) Methods in molecular biology: biosensors and biodetection, vol 503. Humana, New York, pp 139–165

    Chapter  Google Scholar 

  28. Mira D, Llorente R, Morais S, Puchades R, Maquieira A, Marti J (2004) Proc SPIE 5617:364–373

    CAS  Article  Google Scholar 

  29. Cross GH, Reeves A, Brand S, Swann MJ, Peel LL, Freeman NJ, Lu JRJ (2004) Phys D Appl Phys 37:74–80

    CAS  Article  Google Scholar 

  30. Chrisey LA, Lee GU, O’Ferrall EC (1996) Nucleic Acids Res 24:3031–3039

    CAS  Article  Google Scholar 

  31. Viganò M, Suriano R, Levi M, Turri S, Chiari M, Damin F (2007) Surf Sci 601:1365–1367

    Article  Google Scholar 

  32. JrT P (1985) Adv Protein Chem 37:231–237

    Google Scholar 

  33. Stobiecka M, Hepel M, Radecki J (2005) Electrochim Acta 50:4873–4887

    CAS  Article  Google Scholar 

  34. Liao W, Wei F, Qian MX, Zhao XS (2004) Sens Actuators B 101:361–367

    Article  Google Scholar 

  35. Ham HO, Liu Z, Aaron Lau KH, Lee, Messersmith PB (2011) Angew Chem Int Ed 50:732–736

    CAS  Article  Google Scholar 

  36. Graf N, Gross T, Wirth T, Weigel W, Unger W (2009) Anal Bioanal Chem 393:1907–1912

    CAS  Article  Google Scholar 

  37. Bras M, Dugas V, Bessueille F, Cloarec JP, Martin JR, Cabrera M, Chauvet JP, Souteyrand E, Garrigues M (2004) Biosens Bioelectron 20:797–806

    CAS  Article  Google Scholar 

  38. Danos L, Greef R, Markvart T (2008) Thin Solid Films 516:7251–7255

    CAS  Article  Google Scholar 

  39. Marks RS, Lowe CR, Cullen DC, Weetall HH, Karube I (2007) Handbook of biosensors and biochips, vol 1, chap 32. Wiley, New York

    Google Scholar 

  40. Tinland B, Pluen A, Sturm J, Weill G (1997) Macromolecules 30:5763–5765

    CAS  Article  Google Scholar 

  41. García-Rupérez J, Toccafondo Bañuls MJ, Castelló JG, Griol A, Peransi-Llopis S, Maquieira A (2010) Opt Express 18:24276–24286

    Article  Google Scholar 

  42. Armani AM, Kulkarni RP, Fraser SE, Flagan RC, Vahala KJ (2007) Science 317:783–787

    CAS  Article  Google Scholar 

  43. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank European Union (INTOPSENS FP7-ICT-223932), Ministerio de Ciencia e Innovación (project no. FEDER CTQ2010-15943) and Generalitat Valenciana (project no. PROMETEO/2010/008 and GV-2010-031) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Maquieira.

Additional information

Published in the special paper collection Optical Biochemical and Chemical Sensors with guest editor Laura M. Lechuga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 247 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Escorihuela, J., Bañuls, M.J., Castelló, J.G. et al. Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors. Anal Bioanal Chem 404, 2831–2840 (2012). https://doi.org/10.1007/s00216-012-6280-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6280-4

Keywords

  • Photonic nanobiosensor
  • Silicon-based materials
  • Label free
  • DNA microarray