Skip to main content

Advertisement

Log in

Direct detection of peptides and proteins on a microfluidic platform with MALDI mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The ability to detect and quantify proteins of individual cells in high throughput is of enormous biological and clinical relevance. Most methods currently in use either require the measurement of large cell populations or are limited to the investigation of few cells at a time. In this report, we present the combination of a polydimethylsiloxane-based microfluidic device to a matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS) that allows the detection of as few as 300 molecules at the peptide level and ∼106 to 107 molecules at the protein level. Moreover, we performed an immunoassay with subsequent MALDI-TOF-MS to capture and detect insulin immobilized on a surface (∼0.05 mm2) in this device with a detection limit of 106 insulin molecules. This microfluidic-based approach therefore begins to approach the sample handling and sensitivity requirements for MS-based single-cell analysis of proteins and peptides and holds the potential for easy parallelization of immunoassays and other highly sensitive protein analyses.

Combined immunoassay and MALDI/TOF-MS for insulin in a microfluidic platform

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Calligaris D, Villard C, Lafitte D (2011) J Proteomics 74:920–934

    Article  CAS  Google Scholar 

  2. Chao T-C, Hansmeier N, Halden RU (2010) J Proteomics 73:1641–1646

    Article  CAS  Google Scholar 

  3. Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002) Nat Rev Drug Discovery 1:683–695

    Article  CAS  Google Scholar 

  4. Roman GT, Kennedy RT (2007) J Chromatogr A 1168:170–188

    Article  CAS  Google Scholar 

  5. Sims CE, Allbritton NL (2007) Lab Chip 7:423–440

    Article  CAS  Google Scholar 

  6. Price AK, Culbertson CT (2007) Anal Chem 79:2614–2621

    Article  CAS  Google Scholar 

  7. Chao T-C, Ros A (2008) J R Soc Interface 5(Suppl 2):S139–S150

    Article  CAS  Google Scholar 

  8. Arcibal IG, Santillo MF, Ewing AG (2007) Cell 387:51–57

    CAS  Google Scholar 

  9. Cannon DM, Winograd N, Ewing AG (2000) Annu Rev Biomol Struct 29:239–263

    Article  CAS  Google Scholar 

  10. Stuart JN, Sweedler JV (2003) Anal Bioanal Chem 375:28–29

    CAS  Google Scholar 

  11. Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, Herzog F, Rinner O, Ellenberg J, Aebersold R (2011) Mol Syst Biol 7:549

    Article  Google Scholar 

  12. Xie XS, Choi PJ, Li G-W, Lee NK, Lia G (2008) Annu Rev Biophys 37:417–444

    Article  CAS  Google Scholar 

  13. Hanke S, Besir H, Oesterhelt D, Mann M (2008) J Proteome Res 7:1118–1130

    Article  CAS  Google Scholar 

  14. Nordhoff E, Lehrach H, Gobom J (2007) Int J Mass Spectrom 268:139–146

    Article  CAS  Google Scholar 

  15. Amantonico A, Urban PL, Zenobi R (2010) Anal Bioanal Chem 398:2493–2504

    Article  CAS  Google Scholar 

  16. Hofstadler SA, Severs JC, Smith RD, Swanek FD, Ewing AG (1996) Rapid Commun Mass Spectrom 10:919–922

    Article  CAS  Google Scholar 

  17. Cao P, Stults JT (1999) J Chromatogr A 853:225–235

    Article  CAS  Google Scholar 

  18. Rubakhin SS, Churchill JD, Greenough WT, Sweedler JV (2006) Anal Chem 78:7267–7272

    Article  CAS  Google Scholar 

  19. Jo K, Heien ML, Thompson LB, Zhong M, Nuzzo RG, Sweedler JV (2007) Lab Chip 7:1454–60

    Article  CAS  Google Scholar 

  20. Li L, Golding R (1996) J Am Chem Soc 7863:11662–11663

    Article  Google Scholar 

  21. Heinemann M, Zenobi R (2011) Curr Opin Biotechnol 22:26–31

    Article  CAS  Google Scholar 

  22. Ekström S, Ericsson D, Onnerfjord P, Bengtsson M, Nilsson J, Marko-Varga G, Laurell T (2001) Anal Chem 73:214–219

    Article  Google Scholar 

  23. Little DP, Cornish TJ, O’Donnell MJ, Braun A, Cotter RJ, Köster H (1997) Anal Chem 69:4540–4546

    Article  CAS  Google Scholar 

  24. Ressine A, Finnskog D, Marko-Varga G, Laurell T (2008) NanoBiotechnology 4:18–27

    Article  CAS  Google Scholar 

  25. Schuerenberg M, Luebbert C, Eickhoff H, Kalkum M, Lehrach H, Nordhoff E (2000) Anal Chem 72:3436–3442

    Article  CAS  Google Scholar 

  26. Nordhoff E, Schürenberg M, Thiele G, Lübbert C, Kloeppel K-D, Theiss D, Lehrach H, Gobom J (2003) Int J Mass Spectrom 226:163–180

    Article  CAS  Google Scholar 

  27. Moon H, Wheeler AR, Garrell RL, Loo JA, Kim CJC (2006) Lab Chip 6:1213–1219

    Article  CAS  Google Scholar 

  28. Nelson WC, Peng I, Lee G-A, Loo JA, Garrell RL, Kim CJCJ (2010) Anal Chem 82:9932–9937

    Article  CAS  Google Scholar 

  29. Wheeler A, Moon H, Bird C, Ogorzalek Loo RR, Kim C-J, Loo JA, Garell RL (2005) Anal Chem 77:534–540

    Article  CAS  Google Scholar 

  30. Chatterjee D, Ytterberg JA, Son SU, Loo JA, Garrell RL (2010) Anal Chem 82:2095–2101

    Article  CAS  Google Scholar 

  31. Tran TT, Inganäs M, Ekstrand G, Thorsén G (2010) J Chromatogr B Analyt Technol Biomed Life Sci 878:2803–2810

    Article  Google Scholar 

  32. Baker C, Roper MG (2012) Anal Chem 84:2955–2960

    Article  CAS  Google Scholar 

  33. Huang B, Wu H, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN (2007) Science 315:81–84

    Article  CAS  Google Scholar 

  34. Ros A, Hellmich W, Regtmeier J, Duong TT, Anselmetti D (2006) Electrophoresis 27:2651–2658

    Article  CAS  Google Scholar 

  35. Hellmich W, Greif D, Pelargus C, Anselmetti D, Ros A (2006) J Chromatogr A 1130:195–200

    Article  CAS  Google Scholar 

  36. Chao T-C, Kalinowski J, Nyalwidhe J, Hansmeier N (2010) Proteomics 10:1673–1684

    Article  CAS  Google Scholar 

  37. The UniProt Consortium (2012) Nucleic Acids Res 40:D71–5

    Article  Google Scholar 

  38. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  39. Ng HT, Fang A, Huang L, Li SFY (2002) Langmuir 18:6324–6329

    Article  CAS  Google Scholar 

  40. Wild D (2005) The immunoassay handbook. Gulf Professional Publishing, Oxford

    Google Scholar 

  41. Cesaro-Tadic S, Dernick G, Juncker D, Buurman G (2004) Lab Chip 4:563–569

    Article  CAS  Google Scholar 

  42. Kim YE, Yi SY, Lee C-S, Jung Y, Chung BH (2012) Analyst 137:386–392

    Article  CAS  Google Scholar 

  43. Nelson RW, Nedelkov D, Tubbs KA (2000) Electrophoresis 21:1155–1163

    Article  CAS  Google Scholar 

  44. Nelson RW, Jarvik JW, Taillon BE, Tubbs KA (1999) Anal Chem 71:2858–2865

    Article  CAS  Google Scholar 

  45. Nelson RW, Krone JR (1999) JMR 12:77–93

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Chad Borges and Matthew Schaab at the Biodesign Institute at ASU for technical assistance. The authors also thank Nicole Hansmeier for providing a tryptic BSA digest for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Ros.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 82.7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Chao, TC., Nelson, R. et al. Direct detection of peptides and proteins on a microfluidic platform with MALDI mass spectrometry. Anal Bioanal Chem 404, 1681–1689 (2012). https://doi.org/10.1007/s00216-012-6257-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6257-3

Keywords

Navigation