Skip to main content

Advertisement

Log in

Occurrence of 2-methylthiazolidine-4-carboxylic acid, a condensation product of cysteine and acetaldehyde, in human blood as a consequence of ethanol consumption

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Acetaldehyde is a strongly electrophilic compound that is endogenously produced as a first intermediate in oxidative ethanol metabolism. Its high reactivity towards biogenic nucleophiles has toxicity as a consequence. Acetaldehyde readily undergoes a non-enzymatic condensation reaction and consecutive ring formation with cysteine to form 2-methylthiazolidine-4-carboxylic acid (MTCA). For analytical purposes, N-acetylation of MTCA was required for stabilization and to enable its quantification by reversed-phase chromatography combined with electrospray ionization–tandem mass spectrometry. Qualitative screening of post mortem blood samples with negative blood alcohol concentration (BAC) mostly showed low basal levels of MTCA. In BAC-positive post mortem samples, but not in corresponding urine specimens, strongly increased levels were present. To estimate the association between ethanol consumption and the occurrence of MTCA in human blood, the time curves of BAC and MTCA concentration were determined after a single oral dose of 0.5 g ethanol per kilogram of body weight. The blood elimination kinetics of MTCA was slower than that of ethanol. The peak concentration of MTCA (12.6 mg L-1) was observed 4 h after ethanol intake (BAC 0.07‰) and MTCA was still detectable after 13 h. Although intermediary acetaldehyde scavenging by formation of MTCA is interesting from a toxicological point of view, lack of hydrolytic stability under physiological conditions may hamper the use of MTCA as a quantitative marker of acetaldehyde exposure, such as resulting from alcohol consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Comporti M, Signorini C, Leoncini S, Gardi C, Ciccoli L, Giardini A, Vecchio D, Arezzini B (2010) Genes Nutr 5(2):101–109. doi:10.1007/s12263-009-0159-9

    Article  CAS  Google Scholar 

  2. Albermann ME, Musshoff F, Doberentz E, Heese P, Banger M, Madea B (2012) Int J Legal Med 126(5)757–764. doi:10.1007/s00414-012-0725-3

  3. Bicker W, Lammerhofer M, Keller T, Schuhmacher R, Krska R, Lindner W (2006) Anal Chem 78(16):5884–5892. doi:10.1021/ac060680+

    Article  CAS  Google Scholar 

  4. Politi L, Leone F, Morini L, Polettini A (2007) Anal Biochem 368(1):1–16. doi:10.1016/j.ab.2007.05.003

    Article  CAS  Google Scholar 

  5. Vina J, Estrela JM, Guerri C, Romero FJ (1980) Biochem J 188(2):549–552

    CAS  Google Scholar 

  6. Huang TC, Huang LZ, Ho CT (1998) J Agric Food Chem 46(1):224–227. doi:10.1021/jf9705633

    Article  CAS  Google Scholar 

  7. Serrano E, Pozo Oscar J, Beltran J, Hernandez F, Font L, Miquel M, Aragon Carlos MG (2007) Rapid Commun Mass Spectrom 21(7):1221–1229. doi:10.1002/rcm.2951

    Article  CAS  Google Scholar 

  8. Brooks PJ, Theruvathu JA (2005) Alcohol 35(3):187–193. doi:10.1016/j.alcohol.2005.03.009

    Article  CAS  Google Scholar 

  9. Park SC, Han JA, Han JG, Kang HS (1995) Korean J Biochem 27(1):41–45

    Google Scholar 

  10. Tsukamoto S, Kanegae T, Nagoya T, Shimamura M, Mieda Y, Nomura M, Hojo K, Okubo H (1990) Arukoru Kenkyu To Yakubutsu Izon 25(5):429–440

    CAS  Google Scholar 

  11. Collins MA (1988) Recent Dev Alcohol 6:387–403

    Article  CAS  Google Scholar 

  12. Kuschinsky G, Luellmann H (1984) Short textbook of pharmacology and toxicology, 10th edn

  13. Otsuka M, Harada N, Itabashi T, Ohmori S (1999) Alcohol 17(2):119–124. doi:10.1016/S0741-8329(98)00042-1

    Article  CAS  Google Scholar 

  14. Quertemont E, Tambour S (2004) Trends Pharmacol Sci 25(3):130–134. doi:10.1016/j.tips.2004.01.001

    Article  CAS  Google Scholar 

  15. Yamada Y, Imai T, Ishizaki M, Honda R (2006) J Hum Genet 51(2):104–111. doi:10.1007/s10038-005-0330-0

    Article  CAS  Google Scholar 

  16. Vogt BL, Richie JP (2007) Biochem Pharmacol 73(10):1613–1621. doi:10.1016/j.bcp.2007.01.033

    Article  CAS  Google Scholar 

  17. Riemschneider R, Hoyer GA (1962) Z Naturforsch 17b:765–768

    CAS  Google Scholar 

  18. Kallen RG (1971) J Am Chem Soc 93(23):6236–6248

    Article  CAS  Google Scholar 

  19. Nagasawa HT, Goon DJ, Zera RT, Yuzon DL (1982) J Med Chem 25(5):489–491

    Article  CAS  Google Scholar 

  20. Pesek JJ, Frost JH (1975) Tetrahedron 31(8):907–913

    Article  CAS  Google Scholar 

  21. Fulop F, Mattinen J, Pihlaja K (1990) Tetrahedron 46(18):6545–6552. doi:10.1016/s0040-4020(01)96019-3

    Article  CAS  Google Scholar 

  22. Butvin P, Al-Ja’Afreh J, Svetlik J, Havranek E (1999) Chem Pap 53(5):315–322

    CAS  Google Scholar 

  23. Sprince H, Parker CM, Smith GG, Gonzales LJ (1974) Agents Actions 4(2):125–130

    Article  CAS  Google Scholar 

  24. Weber HU, Fleming JF, Miquel J (1982) Arch Gerontol Geriatr 1(4):299–310

    Article  CAS  Google Scholar 

  25. Wlodek L, Rommelspacher H, Susilo R, Radomski J, Hofle G (1993) Biochem Pharmacol 46(11):1917–1928. doi:10.1016/0006-2952(93)90632-7

    Article  CAS  Google Scholar 

  26. Juliano C, Cossu M, Rota MT, Satta D, Poggi P, Giunchedi P (2011) Drug Dev Ind Pharm 37(10):1192–1199. doi:10.3109/03639045.2011.563783

    Article  CAS  Google Scholar 

  27. Kartal A, Hietala J, Laakso I, Kaihovaara P, Salaspuro V, Sakkinen M, Salaspuro M, Marvola M (2007) J Pharm Pharmacol 59(10):1353–1358. doi:10.1211/jpp.59.10.0004

    Article  CAS  Google Scholar 

  28. Salaspuro V, Hietala J, Kaihovaara P, Pihlajarinne L, Marvola M, Salaspuro M (2002) Int J Cancer 97(3):361–364. doi:10.1002/ijc.1620

    Article  CAS  Google Scholar 

  29. Salaspuro VJ, Hietala JM, Marvola ML, Salaspuro MP (2006) Cancer Epidemiol Biomarkers Prev 15(1):146–149. doi:10.1158/1055-9965.EPI-05-0248

    Article  CAS  Google Scholar 

  30. Anni H, Pristatsky P, Israel Y (2003) Alcohol Clin Exp Res 27(10):1613–1621. doi:10.1097/01.ALC.0000089958.65095.84

    Article  CAS  Google Scholar 

  31. Guttormsen AB, Schneede J, Fiskerstrand T, Ueland PM, Refsum HM (1994) J Nutr 124(10):1934–1941

    CAS  Google Scholar 

  32. Parodi O, De Chiara B, Baldassarre D, Parolini M, Caruso R, Pustina L, Parodi G, Campolo J, Sedda V, Baudo F, Sirtori C (2007) Clin Biochem 40(3–4):188–193. doi:10.1016/j.clinbiochem.2006.08.017

    Article  CAS  Google Scholar 

  33. Yardim-Akaydin S, Ozkan Y, Ozkan E, Torun M, Simsek B (2003) Clin Chim Acta 338(1–2):99–105. doi:10.1016/j.cccn.2003.07.021

    Article  CAS  Google Scholar 

  34. Ohata H, Otsuka M, Ohmori S (1997) J Chromatogr B Biomed Sci Appl 693(2):297–305. doi:10.1016/S0378-4347(97)00065-0

    Article  CAS  Google Scholar 

  35. Kartal-Hodzic A, Marvola T, Schmitt M, Harju K, Peltoniemi M, Sivén M (2012) Pharm Dev Technol. doi:10.3109/10837450.2012.659253

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Bicker or Wolfgang Lindner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reischl, R.J., Bicker, W., Keller, T. et al. Occurrence of 2-methylthiazolidine-4-carboxylic acid, a condensation product of cysteine and acetaldehyde, in human blood as a consequence of ethanol consumption. Anal Bioanal Chem 404, 1779–1787 (2012). https://doi.org/10.1007/s00216-012-6255-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6255-5

Keywords

Navigation