Skip to main content
Log in

Application of MALDI-TOF mass spectrometry for the detection of enterotoxins produced by pathogenic strains of the Bacillus cereus group

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Enterotoxins produced by different species of the Bacillus cereus group, such as cytotoxin K1 (CytK1) and non-haemolytic enterotoxin (NHE), have been associated with diarrhoeal food poisoning incidents. Detection of CytK1 is not possible with commercial assays while NHE is recognised by an immunological kit (TECRA) that does not specifically target this protein because it is based on polyclonal antibodies. It is evident that the lack of suitable tools for the study of enterotoxins hampers the possibilities for accurate hazard identification and characterisation in microbial food safety risk assessment. We applied matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) for the detection of CytK1 and NHE produced by pathogenic strains of the B. cereus group using protein digests from 1D gel electrophoresis. Secretion of CytK1 and two of the three components of NHE was confirmed in supernatants of different B. cereus cultures. For each protein, we introduce biomarkers that could be used for the screening of food poisoning or food/environmental isolates that can secrete enterotoxins. For example, tryptic peptides of 2,310.2 and 1,192.5 Da (calculated mass) can be indicators for CytK1 and NheA, respectively, although a simultaneous detection of other enterotoxin-specific peptides is recommended to assure the presence of a toxin in an unknown sample. Comparison of MALDI-TOF/MS with the TECRA kit showed that our methodological strategy performed well and it had the competitive advantage of specifically detecting NheA. Therefore, MALDI-TOF/MS can be successfully incorporated into risk assessment procedures in order to determine the involvement of strains of the B. cereus group in foodborne outbreaks, including the recently described cytK1 producing species, Bacillus cytotoxicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ (2004) J Bacteriol 186:7959–7970

    Article  CAS  Google Scholar 

  2. Nicholson WL (2002) Cell Mol Life Sci 59:410–416

    Article  CAS  Google Scholar 

  3. Choma C, Guinebretiere MH, Carlin F, Schmitt P, Velge P, Granum PE, Nguyen-The C (2000) J Appl Microbiol 88:617–625

    Article  CAS  Google Scholar 

  4. Zhou GP, Liu HZ, He J, Yuan YM, Yuan ZM (2008) Int J Food Microbiol 121:195–200

    Article  CAS  Google Scholar 

  5. Brychta J, Smola J, Pipek P, Ondracek J, Bednar V, Cizek A, Brychta T (2009) Czech J Food Sci 27:284–292

    CAS  Google Scholar 

  6. Lindback T, Fagerlund A, Rodland MS, Granum PE (2004) Microbiology-SGM 150:3959–3967

    Article  Google Scholar 

  7. Vilas-Boas GT, Peruca APS, Arantes OMN (2007) Can J Microbiol 53:673–687

    Article  CAS  Google Scholar 

  8. Arnesen LPS, Fagerlund A, Granum PE (2008) FEMS Microbiol Rev 32:579–606

    Article  Google Scholar 

  9. Schraft H, Griffiths MW (2006) Bacillus cereus gastroenteritis. In: Riemann HP, Cliver DO (eds) Foodborne infections and intoxications. Academic, Amsterdam

    Google Scholar 

  10. Schoeni JL, Wong ACL (2005) J Food Protect 68:636–648

    CAS  Google Scholar 

  11. Agata N, Ohta M, Mori M, Isobe M (1995) FEMS Microbiol Lett 129:17–19

    CAS  Google Scholar 

  12. McKillip JL (2000) Int J Gen Mol Microbiol 77:393–399

    CAS  Google Scholar 

  13. Lund T, De Buyser ML, Granum PE (2000) Mol Microbiol 38:254–261

    Article  CAS  Google Scholar 

  14. Beecher DJ, Macmillan JD (1991) Infect Immun 59:1778–1784

    CAS  Google Scholar 

  15. Lund T, Granum PE (1996) FEMS Microbiol Lett 141:151–156

    Article  CAS  Google Scholar 

  16. Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikam C, Ohba M, Assavanig A, Panbangred W (2008) IntJ Food Microbiol 121:352–356

    Article  CAS  Google Scholar 

  17. Guinebretiere MH, Velge P, Couvert O, Carlin F, Debuyser ML, Nguyen-The C (2010) J Clin Microbiol 48:3388–3391

    Article  Google Scholar 

  18. Ceuppens S, Rajkovic A, Heyndrickx M, Tsilia V, van De Wiele T, Boon N, Uyttendaele M (2011) Critl Rev Microbiol 37:188–213

    Article  CAS  Google Scholar 

  19. Guinebretiere MH, Fagerlund A, Granum PE, Nguyen-The C (2006) FEMS Microbiol Lett 259:74–80

    Article  CAS  Google Scholar 

  20. Ehling-Schulz M, Guinebretiere MH, Monthan A, Berge O, Fricker M, Svensson B (2006) FEMS Microbiol Lett 260:232–240

    Article  CAS  Google Scholar 

  21. Wehrle E, Moravek M, Dietrich R, Burk C, Didier A, Martlbauer E (2009) J Microbiol Methods 78:265–270

    Article  CAS  Google Scholar 

  22. Hansen BM, Hendriksen NB (2001) Appl Environ Microbiol 67:185–189

    Article  CAS  Google Scholar 

  23. Guinebretiere MH, Broussolle V, Nguyen-The C (2002) J Clin Microbiol 40:3053–3056

    Article  CAS  Google Scholar 

  24. Mantynen V, Lindstrom K (1998) Appl Environ Microbiol 64:1634–1639

    CAS  Google Scholar 

  25. Hardy SP, Lund T, Granum PE (2001) FEMS Microbiol Lett 197:47–51

    Article  CAS  Google Scholar 

  26. Dietrich R, Moravek M, Burk C, Granum PE, Martlbauer E (2005) Appl Environ Microbiol 71:8214–8220

    Article  CAS  Google Scholar 

  27. Kotiranta A, Lounatmaa K, Haapasalo M (2000) Microb Infect 2:189–198

    Article  CAS  Google Scholar 

  28. Ankolekar C, Rahmati T, Labbe RG (2009) Int J Food Microbiol 128:460–466

    Article  CAS  Google Scholar 

  29. Beecher DJ, Wong ACL (1994) Appl Environ Microbiol 60:4614–4616

    CAS  Google Scholar 

  30. Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, McWilliams LG, Schmidt JG, Martinez RA, Ashley DL (2005) Emerg Infect Dis 11:1578–1583

    Article  CAS  Google Scholar 

  31. Boyer AE, Gallegos-Candela M, Lins RC, Kuklenyik Z, Woolfitt A, Moura H, Kalb S, Quinn CP, Barr JR (2011) Molecules 16:2391–2413

    Article  CAS  Google Scholar 

  32. Sospedra I, Soler C, Manes J, Soriano JM (2011) Anal Bioanal Chem 400:1525–1531

    Article  CAS  Google Scholar 

  33. Haggblom MM, Apetroaie C, Andersson MA, Salkinoja-Salonen MS (2002) Appl Environ Microbiol 68:2479–2483

    Article  CAS  Google Scholar 

  34. Hoton FM, Fornelos N, N’Guessan E, Hu XM, Swiecicka I, Dierick K, Jaaskelainen E, Salkinoja-Salonen M, Mahillon J (2009) Environ Microbiol Reports 1:177–183

    Article  CAS  Google Scholar 

  35. Gohar M, Okstad OA, Gilois N, Sanchis V, Kolsto AB, Lereclus D (2002) Proteomics 2:784–791

    Article  CAS  Google Scholar 

  36. Gilois N, Ramarao N, Bouillaut L, Perchat S, Aymerich S, Nielsen-LeRoux C, Lereclus D, Gohar M (2007) Proteomics 7:1719–1728

    Article  CAS  Google Scholar 

  37. Moravek M, Dietrich R, Buerk C, Broussolle V, Guinebretiere MH, Granum PE, Nguyen-The C, Martlbauer E (2006) FEMS Microbiol Lett 257:293–298

    Article  CAS  Google Scholar 

  38. Beecher DJ, Wong ACL (1994) Infect Immun 62:980–986

    CAS  Google Scholar 

  39. Fagerlund A, Brillard J, Furst R, Guinebretiere MH, Granum PE (2007) BMC Microbiol 7(43)

    Article  Google Scholar 

  40. Nedelkov D, Nelson RW (2003) Appl Environ Microbiol 69:5212–5215

    Article  CAS  Google Scholar 

  41. Hennekinne JA, Brun V, De Buyser ML, Dupuis A, Ostyn A, Dragacci S (2009) Appl Environ Microbiol 75:882–884

    Article  CAS  Google Scholar 

  42. Jaaskelainen EL, Haggblom MM, Andersson MA, Vanne L, Salkinoja-Salonen MS (2003) J Food Protect 66:1047–1054

    CAS  Google Scholar 

  43. Biesta-Peters EG, Reij MW, Blaauw RH, in’t Veld PH, Rajkovic A, Ehling-Schulz M, Abee T (2010) Appl Environ Microbiol 76:7466–7472

    Article  CAS  Google Scholar 

  44. Auger S, Galleron N, Bidnenko E, Ehrlich SD, Lapidus A, Sorokin A (2008) Appl Environ Microbiol 74:1276–1280

    Article  CAS  Google Scholar 

  45. Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser M-L, Lamberet G, Fagerlund A, Granum PE, Lereclus D, De Vos P, Nguyen-The C, Sorokin A (2012) Int J Syst Evol Microbiol (in press)

  46. Fagerlund A, Ween A, Lund T, Hardy SP, Granum PE (2004) Microbiology-SGM 150:2689–2697

    Article  CAS  Google Scholar 

  47. Rivera AMG, Granum PE, Priest FG (2000) FEMS Microbiol Lett 190:151–155

    Article  Google Scholar 

  48. Ehling-Schulz M, Svensson B, Guinebretiere MH, Lindback T, Andersson M, Schulz A, Fricker M, Christiansson A, Granum PE, Martlbauer E, Nguyen-The C, Salkinoja-Salonen M, Scherer S (2005) Microbiology-SGM 151:183–197

    Article  CAS  Google Scholar 

  49. Granum PE, O’Sullivan K, Lund T (1999) FEMS Microbiol Lett 177:225–229

    CAS  Google Scholar 

  50. Krause N, Moravek M, Dietrich R, Wehrle E, Slaghuis J, Martlbauer E (2010) Int J Food Microbiol 144:322–326

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. N. Boon for the critical revisions of this manuscript. This work was financially supported by the Belgian Federal Public Service (FOD) of Health, Food Chain Safety and Environment (RT09/2 BACEREUS) and the Special Research Funds of Ghent University (B/09036/02 fund IV1 31/10/2008–31/10/2012). Bart Devreese is indebted to the Belgian Federal Government-Interuniversity Attraction Pole Action P6/19 and a GOA grant from Ghent University Research Funds. Tom Van de Wiele and Andreja Rajkovic are Postdoctoral Fellows belonging to the Fund for Scientific Research (FWO) of Flanders (Belgium). The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Van de Wiele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsilia, V., Devreese, B., de Baenst, I. et al. Application of MALDI-TOF mass spectrometry for the detection of enterotoxins produced by pathogenic strains of the Bacillus cereus group. Anal Bioanal Chem 404, 1691–1702 (2012). https://doi.org/10.1007/s00216-012-6254-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6254-6

Keywords

Navigation