Skip to main content

Advertisement

Log in

Multiplexed protein detection using an affinity aptamer amplification assay

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Affinity probe capillary electrophoresis (APCE) is potentially one of the most versatile technologies for protein diagnostics, offering an excellent balance between robustness, analysis speed and sensitivity. Combining the immunosensing and separating strength of capillary electrophoresis with the signal enhancement power of nucleic acid amplification, aptamers can further push the analytical limits of APCE to offer ultrasensitive, multiplexed detection of protein biomarkers, even when differences in electrophoretic mobility between the different aptamer–target complexes are limited. It is demonstrated how, through careful selection of experimental parameters, simultaneous detection of picomolar levels of three target proteins can be achieved even with aptamers that were initially selected under very different conditions and further taking into account that the aptamers need to be modified to allow successful PCR amplification. Aptamer-enhanced APCE offers limits of detection that are orders of magnitude lower than those that can be achieved through traditional capillary electrophoresis-based immunosensing. With recent developments in aptamer selection that for the first time realise the promise of aptamers as easily accessible, high affinity recognition molecules, it can therefore be envisioned that aptamer-enhanced APCE on parallel microfluidic platforms can be the basis for a truly high-throughput multiplexed proteomics platform, rivalling genetic screening for the first time.

Multiplexed affinity probe capillary electrophoresis (APCE) is enhanced through the use of PCR affinity aptamer amplification, improving both the limits of detection as well as the resolution of a typical APCE assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Snyder M, Weissman S, Gerstein M (2009) Personal phenotypes to go with personal genomes. Mol Syst Biol 5:273. doi:10.1038/msb.2009.32

    Article  Google Scholar 

  2. Van Broeckhoven C (2010) The future of genetic research on neurodegeneration. Nat Med 16(11):1215–1217

    Article  Google Scholar 

  3. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HYK, Chen R, Miriami E, Karczewski KJ, Hariharan M, Dewey FE, Cheng Y, Clark MJ, Im H, Habegger L, Balasubramanian S, O’Huallachain M, Dudley JT, Hillenmeyer S, Haraksingh R, Sharon D, Euskirchen G, Lacroute P, Bettinger K, Boyle AP, Kasowski M, Grubert F, Seki S, Garcia M, Whirl-Carrillo M, Gallardo M, Blasco MA, Greenberg PL, Snyder P, Klein TE, Altman RB, Butte AJ, Ashley EA, Gerstein M, Nadeau KC, Tang H, Snyder M (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6):1293–1307

    Article  CAS  Google Scholar 

  4. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5(12):e15004. doi:10.1371/journal.pone.0015004

    Article  CAS  Google Scholar 

  5. Kahler D, Alexander C, Schultz H, Abdullah M, Branscheid D, Lindner B, Zabel P, Vollmer E, Goldmann T (2010) Proteomics out of the archive: two-dimensional electrophoresis and mass spectrometry using HOPE-fixed, paraffin-embedded tissues. J Histochem Cytochem: Off J Histochem Soc 58(3):221–228. doi:10.1369/jhc.2009.954065

    Article  Google Scholar 

  6. Zichi D, Eaton B, Singer B, Gold L (2008) Proteomics and diagnostics: let’s get specific, again. Curr Opin Chem Biol 12(1):78–85. doi:10.1016/j.cbpa.2008.01.016

    Article  CAS  Google Scholar 

  7. Fredriksson S, Dixon W, Ji H, Koong AC, Mindrinos M, Davis RW (2007) Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat Methods 4(4):327–329. doi:10.1038/nmeth1020

    CAS  Google Scholar 

  8. Schweitzer B, Roberts S, Grimwade B, Shao W, Wang M, Fu Q, Shu Q, Laroche I, Zhou Z, Tchernev VT, Christiansen J, Velleca M, Kingsmore SF (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol 20(4):359–365. doi:10.1038/nbt0402-359

    Article  CAS  Google Scholar 

  9. O’Sullivan C (2002) Aptasensors—the future of biosensing? Anal Bioanal Chem 372(1):44–48. doi:10.1007/s00216-001-1189-3

    Article  Google Scholar 

  10. Xie S, Walton SP (2010) Development of a dual-aptamer-based multiplex protein biosensor. Biosens Bioelectron 25(12):2663–2668. doi:10.1016/j.bios.2010.04.034

    Article  CAS  Google Scholar 

  11. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  12. Shangguan D, Tang Z, Mallikaratchy P, Xiao Z, Tan W (2007) Optimization and modifications of aptamers selected from live cancer cell lines. ChemBioChem 8(6):603–606. doi:10.1002/cbic.200600532

    Article  CAS  Google Scholar 

  13. Pagano B, Martino L, Randazzo A, Giancola C (2008) Stability and binding properties of a modified thrombin binding aptamer. Biophys J 94(2):562–569

    Article  CAS  Google Scholar 

  14. Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132

    Article  CAS  Google Scholar 

  15. Drolet DW, Moon-McDermott L, Romig TS (1996) An enzyme-linked oligonucleotide assay. Nat Biotech 14(8):1021–1025

    Article  CAS  Google Scholar 

  16. Yan X, Cao Z, Lau C, Lu J (2010) DNA aptamer folding on magnetic beads for sequential detection of adenosine and cocaine by substrate-resolved chemiluminescence technology. Analyst 135(9):2400–2407

    Article  CAS  Google Scholar 

  17. Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81(17):7436–7442. doi:10.1021/ac9012072

    Article  CAS  Google Scholar 

  18. Blank M, Weinschenk T, Priemer M, Schluesener H (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276(19):16464–16468. doi:10.1074/jbc.M100347200

    Article  CAS  Google Scholar 

  19. Shin S, Kim IH, Kang W, Yang JK, Hah SS (2010) An alternative to Western blot analysis using RNA aptamer-functionalized quantum dots. Bioorg Med Chem Lett 20(11):3322–3325. doi:10.1016/j.bmcl.2010.04.040

    Article  CAS  Google Scholar 

  20. Baird GS (2010) Where are all the aptamers? Am J Clin Pathol 134(4):529–531. doi:10.1309/ajcpfu4cg2wgjjks

    Article  Google Scholar 

  21. Vaught JD, Bock C, Carter J, Fitzwater T, Otis M, Schneider D, Rolando J, Waugh S, Wilcox SK, Eaton BE (2010) Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc 132(12):4141–4151. doi:10.1021/ja908035g

    Article  CAS  Google Scholar 

  22. Cho M, Xiao Y, Nie J, Stewart R, Csordas AT, Oh SS, Thomson JA, Soh HT (2010) Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc Natl Acad Sci U S A 107(35):15373–15378. doi:10.1073/pnas.1009331107

    Article  CAS  Google Scholar 

  23. Turner DJ, Tuytten R, Janssen KP, Lammertyn J, Wuyts J, Pollet J, Eyckerman S, Brown C, Kas K (2011) Toward clinical proteomics on a next-generation sequencing platform. Anal Chem 83(3):666–670. doi:10.1021/ac102666n

    Article  CAS  Google Scholar 

  24. Berezovski M, Musheev M, Drabovich A, Krylov SN (2006) Non-SELEX selection of aptamers. J Am Chem Soc 128(5):1410–1411

    Article  CAS  Google Scholar 

  25. Zhang H, Li XF, Le XC (2008) Tunable aptamer capillary electrophoresis and its application to protein analysis. J Am Chem Soc 130(1):34–35. doi:10.1021/ja0778747

    Article  CAS  Google Scholar 

  26. Zhang H, Wang Z, Li XF, Le XC (2006) Ultrasensitive detection of proteins by amplification of affinity aptamers. Angew Chem Int Ed Engl 45(10):1576–1580. doi:10.1002/anie.200503345

    Article  CAS  Google Scholar 

  27. Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C, Little S (1997) The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res 25(16):3235–3241

    Article  CAS  Google Scholar 

  28. Janssen KPF, Knez K, Pollet J, Roberts SJ, Schrooten J, Lammertyn J (2011) Assay design considerations for use of affinity aptamer amplification in ultra-sensitive protein assays using capillary electrophoresis. Anal Methods 3(9):2156–2159

    Article  CAS  Google Scholar 

  29. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465

    Article  CAS  Google Scholar 

  30. Fischer NO, Tok JB, Tarasow TM (2008) Massively parallel interrogation of aptamer sequence, structure and function. PLoS One 3(7):e2720. doi:10.1371/journal.pone.0002720

    Article  Google Scholar 

  31. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415. doi:10.1093/nar/gkg595

    Article  CAS  Google Scholar 

  32. Schneider DJ, Feigon J, Hostomsky Z, Gold L (1995) High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry 34(29):9599–9610

    Article  CAS  Google Scholar 

  33. Ditzler MA, Bose D, Shkriabai N, Marchand B, Sarafianos SG, Kvaratskhelia M, Burke DH (2011) Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Nucleic Acids Res 39(18):8237–8247. doi:10.1093/nar/gkr381

    Article  CAS  Google Scholar 

  34. Fisher TS, Joshi P, Prasad VR (2005) HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors. AIDS Res Ther 2:8. doi:10.1186/1742-6405-2-8

    Article  Google Scholar 

  35. Macaya RF, Schultze P, Smith FW, Roe JA, Feigon J (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci U S A 90(8):3745–3749

    Article  CAS  Google Scholar 

  36. Hall B, Cater S, Levy M, Ellington AD (2009) Kinetic optimization of a protein-responsive aptamer beacon. Biotech Bioeng 103(6):1049–1059. doi:10.1002/bit.22355

    Article  CAS  Google Scholar 

  37. Wiegand TW, Williams PB, Dreskin SC, Jouvin MH, Kinet JP, Tasset D (1996) High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J Immunol 157(1):221–230

    CAS  Google Scholar 

  38. Tasset DM, Kubik MF, Steiner W (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272(5):688–698. doi:10.1006/jmbi.1997.1275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank The Fund for Scientific Research Flanders (FWO), EFRO financing Interreg NanoSensEU and EU FP7-KBBE-2009-3-245137 Marex. JS acknowledges the support from the KU Leuven—IOF Knowledge Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Lammertyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, K.P.F., Knez, K., Spasic, D. et al. Multiplexed protein detection using an affinity aptamer amplification assay. Anal Bioanal Chem 404, 2073–2081 (2012). https://doi.org/10.1007/s00216-012-6252-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6252-8

Keywords

Navigation