Skip to main content
Log in

Speciation of lead in seawater and river water by using Saccharomyces cerevisiae immobilized in agarose gel as a binding agent in the diffusive gradients in thin films technique

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae immobilized in agarose gel is proposed as a binding agent for the diffusive gradients in thin films (DGT) technique for determination of Pb in river water and seawater. DGT samplers were assembled with the proposed binding agent (25-mm disk containing 20 %, m/v, S. cerevisiae and 3.0 %, m/v, agarose) and a diffusive layer of cellulose (3MM Chr chromatography paper of 25-mm diameter). The effects of some DGT parameters (e.g., immersion time, ionic strength, and pH) were evaluated. Elution of Pb from the binding agent was effectively done with 1.75 mol L−1 HNO3. The deployment curve (between 2 and 24 h) was characterized by a significant uptake of Pb (346 ng Pb h−1) and good linear regression (R 2 = 0.9757). The experimental results are in excellent agreement with the predicted theoretical curve for mass uptake. Consistent results were found for solutions with ionic strengths of 0.005 mol L−1 or greater and within a pH range of 4.5–8.5. Interferences from Cu (20:1), Mn (20:1), Fe (20:1), Zn (20:1), Ca (250:1), and Mg (250:1) in Pb retention were negligible. Determination of Pb in spiked river water samples (from the Corumbataí and Piracicaba rivers) performed using the proposed device was in agreement with total dissolved Pb, whereas measurements in seawater suggest that of the various species of Pb present in the samples, only cationic Pb species are adsorbed by the agarose–yeast gel disks. The in situ concentration of Pb obtained at two different sites of the Rio Claro stream (Corumbataí basin) were 1.13 ± 0.01 and 1.34 ± 0.04 μg L−1. For 72-h deployments, a detection limit of 0.75 μg L−1 was calculated. The combination of inductively coupled plasma optical emission spectroscopy and in situ deployments of DGT samplers during the 72-h period makes possible the determination of labile Pb in river water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Azevedo FA, Chasin AAM (2003) Metais: Gerenciamento da Toxicidade. Atheneu, São Paulo

    Google Scholar 

  2. Zhang H, Davison W (1995) Anal Chem 67:3391–3400

    Article  CAS  Google Scholar 

  3. Chang LY, Davison W, Zhang H, Kelly M (1998) Anal Chim Acta 368:243–253

    Article  CAS  Google Scholar 

  4. Li WJ, Li CS, Zhao JJ, Cornett RJ (2007) Anal Chim Acta 592:106–113

    Article  CAS  Google Scholar 

  5. Sogn TA, Eich-Greatorex S, Royset O, Ogaard AF, Almas AR (2008) Commun Soil Sci Plant Anal 39:587–602

    Article  CAS  Google Scholar 

  6. Zhang H, Davison W, Gade R, Kobayashi T (1998) Anal Chim Acta 370:29–38

    Article  CAS  Google Scholar 

  7. Teasdale PR, Hayward S, Davison W (1999) Anal Chem 71:2186–2191

    Article  CAS  Google Scholar 

  8. Panther JG, Stillwell KP, Powell KJ, Downard AJ (2008) Anal Chim Acta 622:133–142

    Article  CAS  Google Scholar 

  9. Manson S, Hamon R, Nolan A, Zhang H, Davison W (2005) Anal Chem 77:6339–6346

    Article  Google Scholar 

  10. Li W, Zhao H, Teasdale PR, Wang F (2005) Talanta 67:571–578

    Article  CAS  Google Scholar 

  11. Warken KW, Zhang H, Davison W (2004) Anal Chim Acta 508:41–51

    Article  Google Scholar 

  12. Li W, Zhao H, Teasdale PR, John R, Zhang S (2002) Anal Chim Acta 464:331–339

    Article  CAS  Google Scholar 

  13. Gregusova M, Docekal B, Docekalova H (2008) Chem Listy 102:213–217

    CAS  Google Scholar 

  14. Divis P, Szkandera R, Brulik L, Docekalova H, Matus P, Bujdos M (2009) Anal Sci 25:575–578

    Article  CAS  Google Scholar 

  15. Fan H, Sun T, Li W, Sui D, Jin S, Lian X (2009) Talanta 79:1228–1232

    Article  CAS  Google Scholar 

  16. Li W, Wang F, Zhang W, Evans D (2009) Anal Chem 81:5889–5895

    Article  CAS  Google Scholar 

  17. McGilford RW, Seen AJ, Haddad R (2010) Anal Chim Acta 662:44–50

    Article  Google Scholar 

  18. Leermakers M, Gao Y, Navez J, Poffijn A, Croes K, Baeyens W (2009) J Anal At Spectrom 24:1115–1117

    Article  CAS  Google Scholar 

  19. Menegário AA, Tonello PS, Durrant SF (2010) Anal Chim Acta 683:107–112

    Article  Google Scholar 

  20. Brayner R, Couté A, Livage J, Perrette C, Sicard C (2011) Anal Bioanal Chem 401:581–597

    Article  CAS  Google Scholar 

  21. Wanekaya AK, Chenb W, Mulchandani A (2008) J Environ Monit 10:703–712

    Article  CAS  Google Scholar 

  22. Yuce M, Nazır H, Donmez G (2011) New Biotechnol 28:356–361

    Article  Google Scholar 

  23. Ouangpipat W, Lelasattarathkul T, Dongduen C, Liawruangrath S (2003) Talanta 61:455–464

    Article  CAS  Google Scholar 

  24. Yuce M, Nazır H, Donmez G (2010) Biosens Bioelectron 26:321–326

    Article  Google Scholar 

  25. Bag H, Lale M, Turker AR (1998) Talanta 47:689–696

    Article  CAS  Google Scholar 

  26. Bag H, Lale M, Turker AR (1999) Fresenius J Anal Chem 363:224–230

    Article  CAS  Google Scholar 

  27. Maquieira A, Elmahadi HAM, Puchades R (1994) Anal Chem 66:1462–1468

    Article  CAS  Google Scholar 

  28. Biscaro PA, Menegário AA, Tonello PS, Caldorin R (2007) Quim Nova 30:323–326

    Article  CAS  Google Scholar 

  29. Almeida E (2011) Determinação de metais na bacia do rio Piracicaba usando as técnicas de difusão em filmes finos por gradiente de concentração (DGT) e fluorescência de raios X por dispersiva em energia (EDXRF) e por reflexão total (TXRF). Doctoral thesis, University of São Paulo

  30. Warnken KW, Zhang H, Davison W (2005) Anal Chem 77:5440–5446

    Article  CAS  Google Scholar 

  31. Durán I, Nieto O (2011) Talanta 85:1888–1896

    Article  Google Scholar 

  32. Scoullos MJ, Pavlidou AS (2003) Water Air Soil Pollut 147:203–227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amauri Antonio Menegário.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pescim, G.F., Marrach, G., Vannuci-Silva, M. et al. Speciation of lead in seawater and river water by using Saccharomyces cerevisiae immobilized in agarose gel as a binding agent in the diffusive gradients in thin films technique. Anal Bioanal Chem 404, 1581–1588 (2012). https://doi.org/10.1007/s00216-012-6248-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6248-4

Keywords

Navigation