Skip to main content
Log in

Simultaneous enantioselective determination of triazole fungicide difenoconazole and its main chiral metabolite in vegetables and soil by normal-phase high-performance liquid chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein is reported, for the first time, a simple and highly sensitive chiral high-performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of difenoconazole stereoisomers and their hydroxylated metabolite difenoconazole alcohol (CGA-205375) enantiomers in vegetables and soil matrix. The separation of difenoconazole and CGA-205375 including their simultaneous enantioseparation was studied using four different polysaccharide-type chiral stationary phases (CSPs) in combination with n-hexane–polar organic alcohols mobile phase. Chiralcel OJ consisting of 25 % of cellulose tris(4-methylbenzoate) coated on wide-pore polysaccharide silica gel exhibited higher resolving ability compared to cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD) as well as to its similar amylose derivative (Chiralpak AD) CSPs for this particular set of chiral analytes. Baseline separation and simultaneous enantioseparation of difenoconazole and its metabolite CGA-205375 could be achieved under optimized separation conditions. Based on the established HPLC method, enantioselective analysis method for this fungicide and its main chiral metabolite in vegetables and soil matrix were developed and validated. Parameters including the matrix effect, linearity, precision, accuracy, and stability were evaluated. Under the optimal conditions, the mean recoveries from cucumber, tomato, and soil matrix ranged from 81.65 to 94.52 %, with relative standard deviations in the range of 1.05–8.32 % for all stereoisomers. Coefficients of determination R 2 ≥ 0.998 were achieved for each enantiomer in the cucumber, tomato and soil matrix calibration curves within the range of 0.5–50 μg mL-1. The limits of quantification for all enantiomers in three matrices were all below 0.1 μg mL-1. The methodology was successfully applied for simultaneous enantioselective analysis of difenoconazole stereoisomers and their metabolite in the real samples, indicating its efficacy in investigating the environmental stereochemistry of difenoconazole in food and environmental matrix.

Typical chromatograms of difenoconazole and its chiral metabolite CGA-205375 in real soil sample detected by chiral HPLC system and GC-MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gal J (2008) Chirality 20:1072–1084

    Article  CAS  Google Scholar 

  2. Smith SW (2009) Toxicol Sci 110:4–30

    Article  CAS  Google Scholar 

  3. Williams A (1996) Pestic Sci 46:3–9

    Article  CAS  Google Scholar 

  4. Zhou Y, Li L, Lin KD, Zhu XP, Liu WP (2009) Chirality 21:421–427

    Article  CAS  Google Scholar 

  5. Liu W, Gan J, Schlenk D, Jury WA (2005) Proc Nat Acad Sci USA 102:701–706

    Article  CAS  Google Scholar 

  6. Wong CS (2006) Anal Bioanal Chem 386:544–558

    Article  CAS  Google Scholar 

  7. Wong CS, Lau F, Clark M, Mabury SA, Muir DCG (2002) Environ Sci Technol 36:1257–1262

    Article  CAS  Google Scholar 

  8. Liu W, Gan J, Lee S, Werner I (2005) Environ Toxicol Chem 24:1861–1866

    Article  CAS  Google Scholar 

  9. Elmarakby SA, Supplee D, Cook R (2001) J Agric Food Chem 49:5285–5293

    Article  CAS  Google Scholar 

  10. Gopinath K, Radhakrishnan N, Jayaraj J (2006) Crop Prot 25:1024–1031

    Article  CAS  Google Scholar 

  11. Vawdrey L, Grice K, Westerhuis D (2008) Australas Plant Path 37:552–558

    Article  CAS  Google Scholar 

  12. Horsfield A, Wicks T, Davies K, Wilson D, Paton S (2010) Australas Plant Path 39:368–375

    Article  CAS  Google Scholar 

  13. Dahmen H, Staub T (1992) Plant Dis 76:774–777

    Article  CAS  Google Scholar 

  14. EFSA Journal (2011) 9: Article 1967

  15. Sanderson JT, Boerma J, Lansbergen GWA, van den Berg M (2002) Toxicol Appl Pharm 182:44–54

    Article  CAS  Google Scholar 

  16. Sanderson JT (2006) Toxicol Sci 94:3–21

    Article  CAS  Google Scholar 

  17. Thom E, Ottow JCG, Benckiser G (1997) Environ Pollut 96:409–414

    Article  CAS  Google Scholar 

  18. Banerjee K, Oulkar DP, Patil SH, Dasgupta S, Adsule PG (2008) Pest Manag Sci 64:283–289

    Article  CAS  Google Scholar 

  19. Kahle M, Buerge IJ, Hauser A, MD Mu ller, Poiger T (2008) Environ Sci Technol 42:7193–7200

    Article  CAS  Google Scholar 

  20. Mukhopadhyay S, Das S, Bhattacharyya A, Pal S (2011) B Environ Contam Tox 87:54–57

    Article  CAS  Google Scholar 

  21. Garrison AW, Avants JK, Jones WJ (2011) Environ Sci Technol 45:2186–2193

    Article  CAS  Google Scholar 

  22. Garrison AW (2006) Environ Sci Technol 40:16–23

    Article  Google Scholar 

  23. Gadher P, Mercer E, Baldwin B, Wiggins T (1983) Pestic Biochem Phys 19:1–10

    Article  CAS  Google Scholar 

  24. Kurihara N, Miyamoto J, Paulson G, Zeeh B, Skidmore M, Hollingworth R, Kuiper H (1997) Pure Appl Chem 69:2007–2025

    Article  CAS  Google Scholar 

  25. Buerge IJ, Poiger T, Mueller MD, Buser HR (2006) Environ Sci Technol 40:5443–5450

    Article  CAS  Google Scholar 

  26. Ye J, Wu J, Liu W (2009) TRAC Trend Anal Chem 28:1148–1163

    Article  CAS  Google Scholar 

  27. Li J, Dong FS, Xu J, Liu XG, Li YB, Shan WL, Zheng YQ (2011) Anal Chim Acta 702:127–135

    Article  CAS  Google Scholar 

  28. Chankvetadze B, Blaschke G (2001) J Chromatogr A 906:309–363

    Article  CAS  Google Scholar 

  29. Chankvetadze B (1997) J Chromatogr A 792:269–295

    Article  CAS  Google Scholar 

  30. Wu Y, Lee H, Li S (2001) J Chromatogr A 912:171–179

    Article  CAS  Google Scholar 

  31. Garrison AW, Avants JK, Miller RD (2011) Int J Environ Res Public Health 8:3453–3467

    Article  CAS  Google Scholar 

  32. Toribio L, Del Nozal M, Bernal J, Jiménez J, Alonso C (2004) J Chromatogr A 1046:249–253

    CAS  Google Scholar 

  33. Li J, Dong F, Xu J, Liu X, Li Y, Shan W, Zheng Y (2012) Chirality 24:294–302

    Article  CAS  Google Scholar 

  34. Dong FS, Liu XG, Zheng YQ, Cao Q, Li CJ (2010) Chirality 22:292–298

    Article  CAS  Google Scholar 

  35. Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T (2002) J Chromatogr A 965:35–49

    Article  CAS  Google Scholar 

  36. Chankvetadze B, Yamamoto C, Kamigaito M, Tanaka N, Nakanishi K, Okamoto Y (2006) J Chromatogr A 1110:46–52

    Article  CAS  Google Scholar 

  37. Chankvetadze B, Yashima E, Okamoto Y (1994) J Chromatogr A 670:39–49

    Article  CAS  Google Scholar 

  38. Lin K, Xu C, Zhou S, Liu W, Gan J (2007) Chirality 19:171–178

    Article  CAS  Google Scholar 

  39. Lao W, Gan J (2006) J Chromatogr A 1117:184–193

    Article  CAS  Google Scholar 

  40. Kunath A, Theil F, Wagner J (1994) J Chromatogr A 684:162–167

    Article  CAS  Google Scholar 

  41. O’Brien T, Crocker L, Thompson R, Thompson K, Toma P, Conlon D, Feibush B, Moeder C, Bicker G, Grinberg N (1997) Anal Chem 69:1999–2007

    Article  Google Scholar 

  42. Schenck FJ, Lehotay SJ (2000) J Chromatogr A 868:51–61

    Article  CAS  Google Scholar 

  43. Schenck FJ, Lehotay SJ, Vega V (2002) J Sep Sci 25:883–890

    Article  CAS  Google Scholar 

  44. Okihashi M, Kitagawa Y, Akutsu K, Obana H, Tanaka Y (2005) J Pestic Sci 30:368–377

    Article  CAS  Google Scholar 

  45. Plössl F, Giera M, Bracher F (2006) J Chromatogr A 1135:19–26

    Article  Google Scholar 

  46. González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2008) J Chromatogr A 1196:100–109

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Nature Science Foundation of China (NSFC, 31071706 and 31000863), the foundation of the National Basic Research Program of China (The 973 Program, Grant no. 2009CB119000) and Public Service Sector Research and Development Project (200903054 and 200903033). We are also grateful to Professor Bezhan Chankvetadze for providing professional review and helpful comments on the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zheng.

Additional information

Jing Li and Fengshou Dong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Dong, F., Cheng, Y. et al. Simultaneous enantioselective determination of triazole fungicide difenoconazole and its main chiral metabolite in vegetables and soil by normal-phase high-performance liquid chromatography. Anal Bioanal Chem 404, 2017–2031 (2012). https://doi.org/10.1007/s00216-012-6240-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6240-z

Keywords

Navigation