Skip to main content
Log in

Comparative study of the three different fluorophore antibody conjugation strategies

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The progression in bioconjugational chemistry has significantly contributed to the evolution and success of protein biology. Mainly, antibody chemistry has been a subject of intensive study owing to the expansion of research areas warranted by using various derivatives of conjugated antibodies. Three reactive moieties (amine, sulfhydryl and carbohydrate) in the antibodies are chiefly favored for the conjugational purpose. This feature is known for decades, nevertheless, amine based conjugation is still the most preferred strategy despite the appreciation the other two methods receive in conserving the antigen binding affinity (ABA). No single report has been published, according to our knowledge, where these three conjugation strategies were applied to the same fluorophore antibody systems. In this study, we evaluated conjugation yield, time demand and cost efficiency of these conjugation procedures. Our results showed that amine based conjugations was by far the best technique due to its simplicity, rapidity, ease of operation, higher conjugate yield, cheaper cost and potential for larger fluorophore/protein labeling ratio without having much effect in ABA. Furthermore, sulfhydryl labeling clearly excelled in terms of reduced non-specific binding and mild effect in ABA but was usually complicated by an asymmetric antibody reduction due to mercaptoethylamine while carbohydrate oxidation based strategy performed the worst during our experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Antigen binding affinity

CD1d:

Cluster of Differentiation 1d

DTT:

Dithiothreitol

ICAM1:

Intercellular Adhesion Molecule 1

MHC:

Major histocompatibility complex

MEA:

Mercaptoethylamine

MWCO:

Molecular weight cutoff

NEM:

N-ethylmaleimide

References

  1. Goodsell DS (2002) The molecular perspective: antibodies. Stem Cells 20(1):94–95. doi:10.1634/stemcells.20-1-94

    Article  Google Scholar 

  2. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, San Diego

    Google Scholar 

  3. Haugland RP (1995) Coupling of monoclonal antibodies with fluorophores. Methods Mol Biol 45:205–221. doi:10.1385/0-89603-308-2:205

    CAS  Google Scholar 

  4. Brinkley M (1992) A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjug Chem 3(1):2–13

    Article  CAS  Google Scholar 

  5. Pereira M, Lai EP (2008) Capillary electrophoresis for the characterization of quantum dots after non-selective or selective bioconjugation with antibodies for immunoassay. J Nanobiotechnology 6:10. doi:10.1186/1477-3155-6-10

    Article  CAS  Google Scholar 

  6. Adamczyk M, Mattingly PG, Shreder K, Yu Z (1999) Surface plasmon resonance (SPR) as a tool for antibody conjugate analysis. Bioconjug Chem 10(6):1032–1037

    Article  CAS  Google Scholar 

  7. Jeanson A, Cloes JM, Bouchet M, Rentier B (1988) Comparison of conjugation procedures for the preparation of monoclonal antibody-enzyme conjugates. J Immunol Methods 111(2):261–270

    Article  CAS  Google Scholar 

  8. Liskova M, Voracova I, Kleparnik K, Hezinova V, Prikryl J, Foret F (2011) Conjugation reactions in the preparations of quantum dot-based immunoluminescent probes for analysis of proteins by capillary electrophoresis. Anal Bioanal Chem 400(2):369–379. doi:10.1007/s00216-011-4700-5

    Article  CAS  Google Scholar 

  9. Zemmour J, Little AM, Schendel DJ, Parham P (1992) The HLA-A, B “negative” mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol 148(6):1941–1948

    CAS  Google Scholar 

  10. Kang SJ, Cresswell P (2002) Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J 21(7):1650–1660. doi:10.1093/emboj/21.7.1650

    Article  CAS  Google Scholar 

  11. Thomas M, Boname JM, Field S, Nejentsev S, Salio M, Cerundolo V, Wills M, Lehner PJ (2008) Down-regulation of NKG2D and NKp80 ligands by Kaposi’s sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl Acad Sci USA 105(5):1656–1661. doi:10.1073/pnas.0707883105

    Article  Google Scholar 

  12. Kim HS, Garcia J, Exley M, Johnson KW, Balk SP, Blumberg RS (1999) Biochemical characterization of CD1d expression in the absence of beta2-microglobulin. J Biol Chem 274(14):9289–9295

    Article  CAS  Google Scholar 

  13. Szentesi G, Horvath G, Bori I, Vamosi G, Szollosi J, Gaspar R, Damjanovich S, Jenei A, Matyus L (2004) Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell-by-cell basis. Comput Methods Programs Biomed 75(3):201–211. doi:10.1016/j.cmpb.2004.02.004

    Article  Google Scholar 

  14. Liu H, Gaza-Bulseco G, Chumsae C, Newby-Kew A (2007) Characterization of lower molecular weight artifact bands of recombinant monoclonal IgG1 antibodies on non-reducing SDS-PAGE. Biotechnol Lett 29(11):1611–1622. doi:10.1007/s10529-007-9449-8

    Article  CAS  Google Scholar 

  15. Strome SE, Sausville EA, Mann D (2007) A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 12(9):1084–1095. doi:10.1634/theoncologist.12-9-1084

    Article  CAS  Google Scholar 

  16. Vira S, Mekhedov E, Humphrey G, Blank PS (2010) Fluorescent-labeled antibodies: Balancing functionality and degree of labeling. Anal Biochem 402(2):146–150. doi:10.1016/j.ab.2010.03.036

    Article  CAS  Google Scholar 

  17. Pearson JE, Kane JW, Petraki-Kallioti I, Gill A, Vadgama P (1998) Surface plasmon resonance: a study of the effect of biotinylation on the selection of antibodies for use in immunoassays. J Immunol Methods 221(1–2):87–94

    Article  CAS  Google Scholar 

  18. Torres M, Casadevall A (2008) The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol 29(2):91–97. doi:10.1016/j.it.2007.11.004

    Article  CAS  Google Scholar 

  19. Luchowski R, Matveeva EG, Gryczynski I, Terpetschnig EA, Patsenker L, Laczko G, Borejdo J, Gryczynski Z (2008) Single molecule studies of multiple-fluorophore labeled antibodies. Effect of homo-FRET on the number of photons available before photobleaching. Curr Pharm Biotechnol 9(5):411–420

    Article  CAS  Google Scholar 

  20. San Paulo A, Garcia R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys J 78(3):1599–1605. doi:10.1016/S0006-3495(00)76712-9

    Article  CAS  Google Scholar 

  21. Makky A, Berthelot T, Feraudet-Tarisse C, Volland H, Viel P, Polesel-Maris J (2012) Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy. Sens Actuators B Chem 162:269–277

    Article  CAS  Google Scholar 

  22. Bene L, Balazs M, Matko J, Most J, Dierich MP, Szollosi J, Damjanovich S (1994) Lateral organization of the ICAM-1 molecule at the surface of human lymphoblasts: a possible model for its co-distribution with the IL-2 receptor, class I and class II HLA molecules. Eur J Immunol 24(9):2115–2123. doi:10.1002/eji.1830240928

    Article  CAS  Google Scholar 

  23. Humphreys DP, Heywood SP, Henry A, Ait-Lhadj L, Antoniw P, Palframan R, Greenslade KJ, Carrington B, Reeks DG, Bowering LC, West S, Brand HA (2007) Alternative antibody Fab’ fragment PEGylation strategies: combination of strong reducing agents, disruption of the interchain disulphide bond and disulphide engineering. Protein Eng Des Sel 20(5):227–234. doi:10.1093/protein/gzm015

    Article  CAS  Google Scholar 

  24. Mahmoud W, Rousserie G, Reveil B, Tabary T, Millot JM, Artemyev M, Oleinikov VA, Cohen JH, Nabiev I, Sukhanova A (2011) Advanced procedures for labeling of antibodies with quantum dots. Anal Biochem 416(2):180–185. doi:10.1016/j.ab.2011.05.018

    Article  CAS  Google Scholar 

  25. del Rosario RB, Wahl RL (1990) Disulfide bond-targeted radiolabeling: tumor specificity of a streptavidin-biotinylated monoclonal antibody complex. Cancer Res 50(3 Suppl):804s–808s

    Google Scholar 

  26. Hu CM, Kaushal S, Tran Cao HS, Aryal S, Sartor M, Esener S, Bouvet M, Zhang L (2010) Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm 7(3):914–920. doi:10.1021/mp900316a

    Article  CAS  Google Scholar 

  27. Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, Fodor S, Kelner DN, Flynn GC, Liu YD, Bondarenko PV, Ricci MS, Dillon TM, Balland A (2008) Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem 283(23):16194–16205. doi:10.1074/jbc.M709987200

    Article  CAS  Google Scholar 

  28. Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, Handley FG, Ihle NC, Senter PD, Alley SC (2005) Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16(5):1282–1290. doi:10.1021/bc050201y

    Article  CAS  Google Scholar 

  29. Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20(4):471–478. doi:10.1016/j.coi.2008.06.007

    Article  CAS  Google Scholar 

  30. O’Shannessy DJ, Quarles RH (1985) Specific conjugation reactions of the oligosaccharide moieties of immunoglobulins. J Appl Biochem 7(4–5):347–355

    Google Scholar 

  31. Jeffery AM, Zopf DA, Ginsburg V (1975) Affinity chromatography of carbohydrate-specific immunoglobulins: coupling of oligosaccharides to sepharose. Biochem Biophys Res Commun 62(3):608–613

    Article  CAS  Google Scholar 

  32. Tijssen P, Kurstak E (1984) Highly efficient and simple methods for the preparation of peroxidase and active peroxidase-antibody conjugates for enzyme immunoassays. Anal Biochem 136(2):451–457

    Article  CAS  Google Scholar 

  33. Husain M, Bieniarz C (1994) Fc site-specific labeling of immunoglobulins with calf intestinal alkaline phosphatase. Bioconjug Chem 5(5):482–490

    Article  CAS  Google Scholar 

  34. Nakane PK, Kawaoi A (1974) Peroxidase-labeled antibody. A new method of conjugation. J Histochem Cytochem 22(12):1084–1091

    Article  CAS  Google Scholar 

  35. Dirksen A, Dawson PE (2008) Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug Chem 19(12):2543–2548. doi:10.1021/bc800310p

    Article  CAS  Google Scholar 

  36. Zeng Y, Ramya TN, Dirksen A, Dawson PE, Paulson JC (2009) High-efficiency labeling of sialylated glycoproteins on living cells. Nat Methods 6(3):207–209. doi:10.1038/nmeth.1305

    Article  CAS  Google Scholar 

  37. Thygesen MB, Munch H, Sauer J, Clo E, Jorgensen MR, Hindsgaul O, Jensen KJ (2010) Nucleophilic catalysis of carbohydrate oxime formation by anilines. J Org Chem 75(5):1752–1755. doi:10.1021/jo902425v

    Article  CAS  Google Scholar 

  38. Wolfe CA, Hage DS (1995) Studies on the rate and control of antibody oxidation by periodate. Anal Biochem 231(1):123–130. doi:10.1006/abio.1995.1511

    Article  CAS  Google Scholar 

  39. Kondejewski LH, Kralovec JA, Blair AH, Ghose T (1994) Synthesis and characterization of carbohydrate-linked murine monoclonal antibody K20-human serum albumin conjugates. Bioconjug Chem 5(6):602–611

    Article  CAS  Google Scholar 

  40. Solomon B, Koppel R, Schwartz F, Fleminger G (1990) Enzymic oxidation of monoclonal antibodies by soluble and immobilized bifunctional enzyme complexes. J Chromatogr 510:321–329

    Article  CAS  Google Scholar 

  41. Bilkova Z, Slovakova M, Horak D, Lenfeld J, Churacek J (2002) Enzymes immobilized on magnetic carriers: efficient and selective system for protein modification. J Chromatogr B Analyt Technol Biomed Life Sci 770(1–2):177–181

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in whole or in part, by research grants from the Hungarian Scientific Research Fund (K68763), the European Commission grants (LSHC-CT-2005-018914) -ATTACK, MCRTN-CT-2006-036946-2 (IMMUNANOMAP), the New Hungary Development Plan co-financed by the European Social Fund and the European Regional Development Fund (TAMOP-4.2.2-08/1-2008-0019, TAMOP-4.2.1/B-09/1/KONV-2010-007 and TAMOP-4.2.2/B-10/1-2010-0024).We are thankful to the members of receptor tyrosine kinase group, University of Debrecen for their direct/indirect support during the study. We also appreciate the informal discussions that we had with György Vereb and Daniel Beyer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Szöllősi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.43 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, D., Bagosi, A., Szöllősi, J. et al. Comparative study of the three different fluorophore antibody conjugation strategies. Anal Bioanal Chem 404, 1449–1463 (2012). https://doi.org/10.1007/s00216-012-6232-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6232-z

Keywords

Navigation