Skip to main content
Log in

Use of fractal zone plates for transmission X-ray microscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this contribution we discuss the possibility of designing a modified transmission X-ray microscope by using fractal zone plates (Fzps) as diffractive optical elements. In the modified transmission X-ray microscope optical layout, we first introduced a fractal zone plate as the microscope objective. Indeed, a fractal zone plate cannot only be used as an image-forming component but also as a condenser element to achieve an extended depth of field. Numerical analysis reveals that fractal zone plates and conventional Fresnel zone plates have similar imaging capabilities under different coherent illumination. Using a fractal zone plate as a condenser we also simulated axial irradiance. Results confirm that fractal zone plates can improve focusing capability with an extended depth of field. Although preliminary, these simulations clearly reveal that fractal zone plates, when available, will be of great help in microscope layouts, in particular for foreseen high-resolution applications in the “water window” as strongly required in biological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schneider G (1998) Ultramicroscopy 75:85–104

    Article  CAS  Google Scholar 

  2. Thieme J, McNulty I, Vogt S, Paterson D (2007) Environ Sci Technol 41:6885–6889

    Article  CAS  Google Scholar 

  3. Andrews JC et al (2010) Microsc Microanal 16:327–336

    Article  CAS  Google Scholar 

  4. Meyer-Ilse W et al (2001) J Microsc 201:395–403

    Article  CAS  Google Scholar 

  5. Larabell CA, LeGros MA (2003) Mol Biol Cell 15:957–962

    Article  Google Scholar 

  6. Myneni SCB, Brown JT, Martinez GA, Meyer-Ilse W (1999) Science 286:1335–1337

    Article  CAS  Google Scholar 

  7. Stoll H et al (2004) Appl Phys Lett 84:3328–3330

    Article  CAS  Google Scholar 

  8. Chen J et al (2010) Anal Bioanal Chem 397:2117–2121

    Article  CAS  Google Scholar 

  9. Snigirev A, Kohn V, Snigireva I, Souvorov A, Lengeler B (1998) Appl Opt 37:653–662

    Article  CAS  Google Scholar 

  10. Takeuchi A, Suzuki Y, Takano H, Terada Y (2005) Rev Sci Instrum 76:093708–093708

    Article  Google Scholar 

  11. Kumakhov MA (1999) X-ray Spectrom 29:343–348

    Article  Google Scholar 

  12. Yun W et al (1999) Rev Sci Instrum 70:2238–2241

    Article  CAS  Google Scholar 

  13. Fabrizio ED, Romanato F, Gentili M, Cabrini S, Kaulich B, Susini J, Barrett R (1999) Nature 401:895–898

    Article  Google Scholar 

  14. Chao W, Harteneck BD, Liddle JA, Anderson EH, Attwood DT (2005) Nature 435:1210–1213

    Article  CAS  Google Scholar 

  15. Chao W, Anderson EH, Fischer P, Kim DH (2008) SPIE 6683:88309–88309

    Google Scholar 

  16. Furlan WD, Saavedra G, Monsoriu JA (2007) Opt Lett 32:2109–2111

    Article  Google Scholar 

  17. Tao SH, Yuan XC, Lin J, Burge RE (2006) Appl Phys Lett 89:31105–31107

    Article  Google Scholar 

  18. Monsoriu JA, Zapata-Rodríguez CJ, Furlan WD (2006) Opt Commun 263:1–5

    Article  CAS  Google Scholar 

  19. Monsoriu JA, Furlan WD, Andrés P, Lancis J (2006) Opt Express 14:9077–9082

    Article  Google Scholar 

  20. Giménez F, Monsoriu JA, Furlan WD, Pons A (2006) Opt Express 14:11958–11963

    Article  Google Scholar 

  21. Saavedra G, Furlan WD, Monsoriu JA (2003) Opt Lett 28:971–973

    Article  Google Scholar 

  22. Rodrigo JA, Alieva T, Calvo ML, Davis JA (2005) J Mod Opt 52:2771–2783

    Article  CAS  Google Scholar 

  23. Born M, Wolf E (1980) Principles of optics. Cambridge University Press, Cambridge

    Google Scholar 

  24. von Hofsten O, Takman PAC, Vogt U (2007) Ultramicroscopy 107:604–609

    Article  Google Scholar 

  25. Wu D, Niu LG, Chen QD, Wang R, Sun HB (2008) Opt Lett 33:2913–2915

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to gratefully acknowledge Augusto Marcelli for many fruitful discussions. This work was partly supported by the National Basic Research Program of China (2009CB930804, 2012CB825800), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N42), the Key Important Project of the National Natural Science Foundation of China (10734070), the National Natural Science Foundation of China (11179004, 10979055), the Fundamental Research Funds for the Central Universities (WK2310000008, WK2310000021) and the China Postdoctoral Science Foundation (2011M501064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Gao or Ziyu Wu.

Additional information

Published in the special paper collection Imaging Techniques with Synchrotron Radiation with guest editor Cyril Petibois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, X., Wang, Z., Gao, K. et al. Use of fractal zone plates for transmission X-ray microscopy. Anal Bioanal Chem 404, 1303–1309 (2012). https://doi.org/10.1007/s00216-012-6126-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6126-0

Keywords

Navigation