Skip to main content
Log in

Multidimensional nano-HPLC coupled with tandem mass spectrometry for analyzing biotinylated proteins

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multidimensional high-performance liquid chromatography (HPLC) is a key method in shotgun proteomics approaches for analyzing highly complex protein mixtures by complementary chromatographic separation principles. Here, we describe an integrated 3D-nano-HPLC/nano-electrospray ionization quadrupole time-of-flight mass spectrometry system that allows an enzymatic digestion of proteins followed by an enrichment and subsequent separation of the created peptide mixtures. The online 3D-nano-HPLC system is composed of a monolithic trypsin reactor in the first dimension, a monolithic affinity column with immobilized monomeric avidin in the second dimension, and a reversed phase C18 HPLC-Chip in the third dimension that is coupled to a nano-ESI-Q-TOF mass spectrometer. The 3D-LC/MS setup is exemplified for the identification of biotinylated proteins from a simple protein mixture. Additionally, we describe an online 2D-nano-HPLC/nano-ESI-LTQ-Orbitrap-MS/MS setup for the enrichment, separation, and identification of cross-linked, biotinylated species from chemical cross-linking of cytochrome c and a calmodulin/peptide complex using a novel trifunctional cross-linker with two amine-reactive groups and a biotin label.

Schematic representations of the online 3D-nano-HPLC/nano-ESI-Q-TOF-MS/MS setup; LP loading pump, NP nano-pump

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

BSA:

Bovine serum albumin

CaM:

Calmodulin

DMSO:

Dimethyl sulfoxide

ESI-Q-TOF:

Electrospray ionization quadrupole time-of-flight

FA:

Formic acid

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

IMER:

Immobilized monolithic enzyme reactor

MACMA:

Monolithic affinity column with immobilized monomeric avidin

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NHS:

N-hydroxysuccinimide

RP:

Reversed phase

skMLCK:

Skeletal muscle myosin light chain kinase

TFA:

Trifluoroacetic acid

TOF:

Time-of-flight

Tris–HCl:

Tris(hydroxymethyl) aminomethane hydrochloride

Ugi-4CR:

Ugi-4-component reaction

References

  1. Schley C, Altmeyer MO, Swart R, Muller R, Huber CG (2006) J Proteome Res 5(10):2760–2768

    Article  CAS  Google Scholar 

  2. Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, Rappsilber J (2010) EMBO J 29(4):717–726

    Article  CAS  Google Scholar 

  3. Fritzsche R, Ihling CH, Gotze M, Sinz A (2012) Rapid Commun Mass Spectrom: RCM 26(6):653–658

    Article  CAS  Google Scholar 

  4. Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L (2008) J Chromatogr A 1184(1–2):353–368

    CAS  Google Scholar 

  5. Karty JA, Running WE, Reilly JP (2007) J Chromatogr B 847(2):103–113

    Article  CAS  Google Scholar 

  6. Wolters DA, Washburn MP, Yates JR (2001) Anal Chem 73(23):5683–5690

    Article  CAS  Google Scholar 

  7. Boersema PJ, Divecha N, Heck AJR, Mohammed S (2007) J Proteome Res 6(3):937–946

    Article  CAS  Google Scholar 

  8. Mihailova A, Malerod H, Wilson SR, Karaszewski B, Hauser R, Lundanes E, Greibrokk T (2008) J Sep Sci 31(3):459–467

    Article  CAS  Google Scholar 

  9. Gilar M, Olivova P, Daly AE, Gebler JC (2005) J Sep Sci 28(14):1694–1703

    Article  CAS  Google Scholar 

  10. Delmotte N, Lasaosa M, Tholey A, Heinzle E, Huber CG (2007) J Proteome Res 6(11):4363–4373

    Article  CAS  Google Scholar 

  11. Sproß J, Sinz A (2011) J Sep Sci 34(16–17):1958–1973

    Google Scholar 

  12. Dong J, Zhou H, Wu R, Ye M, Zou H (2007) J Sep Sci 30(17):2917–2923

    Article  CAS  Google Scholar 

  13. Feng S, Pan CS, Jiang XG, Xu SY, Zhou HJ, Ye ML, Zou HF (2007) Proteomics 7(3):351–360

    Article  CAS  Google Scholar 

  14. Hou CY, Ma JF, Tao DY, Shan YC, Liang Z, Zhang LH, Zhang YK (2010) J Proteome Res 9(8):4093–4101

    Article  CAS  Google Scholar 

  15. Ren LB, Liu YC, Dong MM, Liu Z (2009) J Chromatogr A 1216(47):8421–8425

    Article  CAS  Google Scholar 

  16. Zhong HW, El Rassi Z (2009) J Sep Sci 32(10):1642–1653

    Article  CAS  Google Scholar 

  17. Sun XH, Yang WC, Pan T, Woolley AT (2008) Anal Chem 80(13):5126–5130

    Article  CAS  Google Scholar 

  18. Yang WC, Sun XH, Pan T, Woolley AT (2008) Electrophoresis 29(16):3429–3435

    Article  CAS  Google Scholar 

  19. Delmotte N, Kobold U, Meier T, Gallusser A, Strancar A, Huber CG (2007) Anal Bioanal Chem 389(4):1065–1074

    Article  CAS  Google Scholar 

  20. Sproß J, Sinz A (2012) Anal Bioanal Chem 402(7):2395–2405

    Article  Google Scholar 

  21. Sproß J, Sinz A (2010) Anal Chem 82(4):1434–1443

    Article  Google Scholar 

  22. Ponomareva EA, Kartuzova VE, Vlakh EG, Tennikova TB (2010) J Chromatogr B 878(5–6):567–574

    Article  CAS  Google Scholar 

  23. Temporini C, Dolcini L, Abee A, Calleri E, Galliano M, Caccialanza G, Massolini G (2008) J Chromatogr A 1183(1–2):65–75

    CAS  Google Scholar 

  24. Sinz A (2006) Mass Spectrom Rev 25(4):663–682

    Article  CAS  Google Scholar 

  25. Green NS, Reisler E, Houk KN (2001) Protein Sci 10(7):1293–1304

    Article  CAS  Google Scholar 

  26. Sinz A, Kalkhof S, Ihling C (2005) J Am Soc Mass Spectrom 16(12):1921–1931

    Article  CAS  Google Scholar 

  27. Hurst GB, Lankford TK, Kennel SJ (2004) J Am Soc Mass Spectrom 15(6):832–839

    Article  CAS  Google Scholar 

  28. Götze M, Pettelkau J, Schaks S, Bosse K, Ihling C, Krauth F, Fritzsche R, Kühn U, Sinz A. J Am Soc Mass Spectrom 1–12

  29. Trester-Zedlitz M, Kamada K, Burley SK, Fenyo D, Chait BT, Muir TW (2003) J Am Chem Soc 125(9):2416–2425

    Article  CAS  Google Scholar 

  30. Dömling A, Ugi I (2000) Angew Chem Int Ed 39(18):3169–3210

    Google Scholar 

  31. Dömling A (2006) Chem Rev 106(1):17–89

    Article  Google Scholar 

  32. Westermann B, Dörner S (2005) Chem Commun 16:2116–2118

    Article  Google Scholar 

  33. Brauch S, Henze M, Osswald B, Naumann K, Waessjohann LA, van Berkel SS, Westermann B (2012) Org Biomol Chem 10:958–965

    Article  CAS  Google Scholar 

  34. Bushnell GW, Louie GV, Brayer GD (1990) J Mol Biol 214(2):585–595

    Article  CAS  Google Scholar 

  35. Dihazi GH, Sinz A (2003) Rapid Commun Mass Spectrom 17(17):2005–2014

    Article  CAS  Google Scholar 

  36. Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A (1992) Science 256(5057):632–638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.S. acknowledges the “Mass Spec Research Summer 2011” award (Agilent Technologies) of the DGMS (German Society for Mass Spectrometry). The authors thank Dr. C.H. Ihling for assistance with MS and Dr. O. Jahn for synthesis of the skMLCK peptide. J.S. thanks Dr. A. Svatoš and Dr. A. Muck for the introduction to monolithic supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens Sproß or Andrea Sinz.

Additional information

Published in the topical collection Monolithic Columns in Liquid Phase Separations with guest editor Luis A. Colon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sproß, J., Brauch, S., Mandel, F. et al. Multidimensional nano-HPLC coupled with tandem mass spectrometry for analyzing biotinylated proteins. Anal Bioanal Chem 405, 2163–2173 (2013). https://doi.org/10.1007/s00216-012-6057-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6057-9

Keywords

Navigation