Skip to main content
Log in

In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 × 1011 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prise KM, Schettino G, Folkard M, Held KD (2005) New insights on cell death from radiation exposure. Lancet Oncol 6:520–528

    Article  CAS  Google Scholar 

  2. Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation. I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159:567–580

    Google Scholar 

  3. Brenner DJ, Sachs RK (2006) Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiat Environ Biophys 44:253–256

    Article  Google Scholar 

  4. Tubiana M, Aurengo A, Masse R, Valleron AJ (2004) Risk of cancer from diagnostic X-rays. Lancet 363:1908, author reply 1910

    Article  CAS  Google Scholar 

  5. Horstmann M, Durante M, Johannes C, Pieper R, Obe G (2005) Space radiation does not induce a significant increase of intrachromosomal exchanges in astronauts’ lymphocytes. Radiat Environ Biophys 44:219–224

    Google Scholar 

  6. Hammer GP, Blettner M, Zeeb H (2009) Epidemiological studies of cancer in aircrew. Radiat Prot Dosimetry 136:232–239

    Article  CAS  Google Scholar 

  7. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100:13761–13766

    Article  CAS  Google Scholar 

  8. Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30:513–528

    Article  CAS  Google Scholar 

  9. Cohen L, Awschalom M (1982) Fast neutron radiation therapy. Annu Rev Biophys Bioeng 11:359–390

    Article  CAS  Google Scholar 

  10. Xue L, Yu D, Furusawa Y, Okayasu R, Tong J et al (2009) Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation. Mutat Res 670:15–23

    Article  CAS  Google Scholar 

  11. Bittner N, Koh W, Laramore GE, Patel S, Mulligan MS et al (2008) Treatment of locally advanced adenoid cystic carcinoma of the trachea with neutron radiotherapy. Int J Radiat Oncol Biol Phys 72:410–414

    Article  Google Scholar 

  12. Meineke V, van Beuningen D, Sohns T, Fliedner TM (2003) Medical management principles for radiation accidents. Mil Med 168:219–222

    Google Scholar 

  13. Meineke V (2005) The role of damage to the cutaneous system in radiation-induced multi-organ failure. BJR Suppl 27:85–99

    CAS  Google Scholar 

  14. Douglas JG, Koh W, Austin-Seymour M, Laramore GE (2003) Treatment of salivary gland neoplasms with fast neutron radiotherapy. Arch Otolaryngol Head Neck Surg 129:944–948

    Article  Google Scholar 

  15. Stelzer KJ, Douglas JG, Mankoff DA, Silbergeld DL, Krohn KA et al (2008) Positron emission tomography-guided conformal fast neutron therapy for glioblastoma multiforme. Neuro Oncol 10:88–92

    Article  Google Scholar 

  16. Santanam L, Tony HE, Yudelev M, Forman JD, Orton CG et al (2007) Intensity modulated neutron radiotherapy for the treatment of adenocarcinoma of the prostate. Int J Radiation Oncology Biol Phys 68:1546–1556

    Article  Google Scholar 

  17. Fratini E, Licursi V, Artibani M, Kobos K, Colautti P, Negri R, Amendola R (2011) Dose-dependent onset of regenerative program in neutron irradiated mouse skin. PlosOne 6:e19242. doi:10.11371/journal.pone.0019242

  18. Paladini RD, Takahashi K, Bravo NS, Coulombe PA (1996) Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol 32:381–397

    Article  Google Scholar 

  19. Webber J (2003) Energy balance in obesity. Proc Nutr Soc 62:539–543

    Article  Google Scholar 

  20. Baratta M (2002) Leptin—from a signal of adiposity to a hormone mediator in peripheral tissues. Med Sci Monit 8:282–292

    Google Scholar 

  21. Trayhurn P, Hoggard N, Mercer JG, Rayner DV (1999) Leptin: fundamental aspects. Int J Obes Relat Metab Disord 23:22–28

    Article  CAS  Google Scholar 

  22. Soukas A, Cohen P, Socci ND, Friedman MJ (2000) Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev 14:963–980

    CAS  Google Scholar 

  23. Petibois C, Déléris G, Piccinini M, Cestelli-Guidi M, Marcelli A (2009) A bright future for synchrotron imaging. Nature Photonics 3:179. doi:10.1038/nphoton.2009.31

    Google Scholar 

  24. Pijanka J, Sockalingum GD, Kohler A, Yang Y, Draux F, Parkes G, Lam K-P, Collins D, Dumas P, Sandt C, van Pittius DG, Douce G, Manfait M, Untereiner V, Sulé-Suso J (2010) Synchrotron-based FTIR spectra of stained single cells. Towards a clinical application in pathology. Lab Invest 90:797–807. doi:10.1038/labinvest.2010.8

    Google Scholar 

  25. Watson GE, Lorimore SA, Clutton SM, Kadhim MA, Wright EG (1997) Genetic factors influencing alpha-particle-induced chromosomal instability. Int J Radiat Biol 71:497–503

    Article  CAS  Google Scholar 

  26. Amendola R, Basso E, Pacifici PG, Piras E, Giovanetti A, Volpato C, Romeo G (2006) RET, cAbl, and TP53 gene fragmentations in COMET-FISH assay act as in vivo bio-markers of radiation exposure in C57Bl/6 and CBA/J mice. Radiat Res 165:553–561

    Article  CAS  Google Scholar 

  27. Martone M, Angelone M, Pillon M (1994) The 14 MeV Frascati Neutron Generator. J Nucl Mater 215:1661–1664

    Article  Google Scholar 

  28. Hendry JH, Potten CS, Chadwick C (1982) Cell death (apoptosis) in the mouse small intestine after low doses: effects of dose-rate, 14.7 MeV neutrons, and 600 MeV (maximum energy) neutrons. Int J Radiat Biol 42:611–620

    Article  CAS  Google Scholar 

  29. Schalla S, Herskind C, Hover K-H, Lorenz WJ, Hahn EW (1998) Changes in RBE of 14-MeV (d+T) neutrons for V79 cells irradiated in air and in phantom: is RBE enhanced near the surface? Strahlenther Onkol 174:204–211

    Article  CAS  Google Scholar 

  30. Papaioannou VE, Fox JG (1993) Efficacy of tribromoethanol anesthesia in mice. Lab Anim Sci 43:189–192

    CAS  Google Scholar 

  31. Saeed AI, Sharov V, White J, Li J, Liang W et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  Google Scholar 

  32. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3

    Article  Google Scholar 

  33. Kis E, Szatmári T, Keszei M, Farkas R, Esik O et al (2006) Microarray analysis of radiation response genes in primary human fibroblasts. Int J Radiat Oncol Biol Phys 66:1506–1514

    Article  CAS  Google Scholar 

  34. Warters RL, Packard AT, Kramer GF, Gaffney DK, Moos PJK (2009) Differential gene expression in primary human skin keratinocytes and fibroblasts in response to ionizing radiation. Radiat Res 172:82–95

    Article  CAS  Google Scholar 

  35. Leonenko Z, Amrein M, Finot E (2007) Determination of the molecular architecture of supported lipid-protein films using atomic force microscopy and spectroscopic ellipsometry. Microsc Microanal 13:1588–1589

    Google Scholar 

  36. Sandberg R, Ernberg I (2005) The molecular portrait of in vitro growth by meta-analysis of gene-expression profiles. Genome Biol 6:R65

    Google Scholar 

  37. Amundson SA, Grace MB, McLeland CB, Epperly MW, Yeager A et al (2004) Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients. Cancer Res 64:6368–6371

    Google Scholar 

  38. Tucker SL, Turesson I, Thames HD (1992) Evidence for individual differences in the radiosensitivity of human skin. Eur J Cancer 28A:1783–1791

    Article  CAS  Google Scholar 

  39. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    Google Scholar 

  40. Fain JN (2010) Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediators Inflamm 513948. doi:10.1155/2010/513948

  41. Turner E, Frey RJM (1994) High LET radiation carcinogenesis: what do we know and what do we need to know? Radiat Prot Dosimetry 52:1–4

    Google Scholar 

  42. Diem M (1993) Introduction to modern vibrational spectroscopy. Wiley–Interscience, New York

    Google Scholar 

  43. Parker FS (1971) Application of infrared spectroscopy in biochemistry, biology, and medicine. Plenum, New York

    Book  Google Scholar 

  44. Huang C-M, Wade Foster K, DeSilva T, Zhang JF, Shi Z, Yusuf N, Van Kampen KR, Elmets CA, Tang DC (2003) Comparative proteomic profiling of murine skin. J Invest Dermatol 121:51–64

    Google Scholar 

  45. Huang C-M, Elmets CA, Van Kampen KR, DeSilva T, Barnes S, Kim H, Tang DC (2005) Prospective highlights of functional skin proteomics. Mass Spectrom Rev 24:647–660

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to M. Angelone and M. Pillon (ENEA, Frascati, Italy) for support regarding the FNG, and T. Paunesku (Department of Radiation Oncology, Northwestern University, Chicago) for a very helpful scientific review of all of the work done. This work was partly funded by the Italian Space Agency (ASI) (ASI MoMa contract, 2006–2009). EF and VL received postdoctoral scholarships from the ASI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cestelli Guidi.

Additional information

Published in the special paper collection Imaging Techniques with Synchrotron Radiation with guest editor Cyril Petibois.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cestelli Guidi, M., Mirri, C., Fratini, E. et al. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study. Anal Bioanal Chem 404, 1317–1326 (2012). https://doi.org/10.1007/s00216-012-6018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6018-3

Keywords

Navigation