Skip to main content
Log in

Multivariate statistics for the differentiation of erythropoietin preparations based on intact glycoforms determined by CE-MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Owing to the increasing number of erythropoietin biosimilars being approved, the comparison of different erythropoietin preparations in the pharmaceutical area is gaining in importance. Erythropoietin has a distinct natural heterogeneity arising from its glycosylation, which shows strong composition variations. This heterogeneity increases the complexity of the analysis of erythropoietin considerably, but may also be used to distinguish different preparations. Here, a method is presented for the differentiation of various erythropoietin preparations by capillary electrophoresis–mass spectrometry and the subsequent application of multivariate statistics. Relative peak areas of selected intact erythropoietin isoforms were used as variables in principal component analysis and hierarchical agglomerative clustering. Both of these strategies were suited for the clear differentiation of all erythropoietin preparations, including marketed products and preproduction preparations, which differ in the manufacturer, the production cell line, and the batch number. By this means, even closely related preparations were distinguished on the basis of the combined information on the antennarity, the sialoform, and the acetylation of the observed isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jacobson LO, Goldwasser E, Fried W, Plzak L (1957) Nature 179(4560):633–634

    Article  CAS  Google Scholar 

  2. Sasaki H, Bothner B, Dell A, Fukuda M (1987) J Biol Chem 262(25):12059–12076

    CAS  Google Scholar 

  3. Nimtz M, Martin W, Wray V, Kloppel KD, Augustin J, Conradt HS (1993) Eur J Biochem 213:39–56

    Article  CAS  Google Scholar 

  4. Takeuchi M, Kobata A (1991) Glycobiology 1(4):337–346

    Article  CAS  Google Scholar 

  5. Rush RS, Derby PL, Smith DM, Merry C, Rogers G, Rohde MF, Katta V (1995) Anal Chem 67(8):1442–1452

    Article  CAS  Google Scholar 

  6. Hokke CH, Bergwerff AA, Van Dedem GW, Kamerling JP, Vliegenthart JF (1995) Eur J Biochem 228:981–1008

    Article  CAS  Google Scholar 

  7. Narhi LO, Arakawa T, Aoki KH, Elmore R, Rohde MF, Boone T, Strickland TW (1991) J Biol Chem 266(34):23022–23026

    CAS  Google Scholar 

  8. Wasley LC, Timony G, Murtha P, Stoudemire J, Dorner AJ, Caro J, Krieger M, Kaufman RJ (1991) Blood 77(12):2624–2632

    CAS  Google Scholar 

  9. Li H, d’Anjou M (2009) Curr Opin Biotechnol 20(6):678–684

    Article  CAS  Google Scholar 

  10. Balaguer E, Demelbauer U, Pelzing M, Sanz-Nebot V, Barbosa J, Neusüß C (2006) Electrophoresis 27(13):2638–2650

    Article  CAS  Google Scholar 

  11. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW (1987) New Engl J Med 316(2):73–78

    Article  CAS  Google Scholar 

  12. Dunphy FR, Harrison BR, Dunleavy TL, Rodriguez JJ, Hilton JG, Boyd JH (1999) Cancer 86(7):1362–1367

    Article  CAS  Google Scholar 

  13. Cheer SM, Wagstaff AJ (2004) Drugs 64(3):323–346

    Article  CAS  Google Scholar 

  14. Glaspy J, Beguin Y (2005) Oncology 69(Suppl 2):8–16

    Article  Google Scholar 

  15. Drüeke TB, Locatelli F, Clyne N, Eckardt K-U, Macdougall IC, Tsakiris D, Burger H-U, Scherhag A (2006) New Engl J Med 355(20):2071–2084

    Article  Google Scholar 

  16. Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z (1985) Proc Nat Acad Sci USA 82(22):7580–7584

    Article  CAS  Google Scholar 

  17. Jelkmann W (2003) J Endocrin Invest 26(9):832–837

    CAS  Google Scholar 

  18. Catlin DH, Hatton CK, Lasne F (2003) In: Molineux G, Foote M, Elliott S (eds) Erythropoietins and erythropoiesis, 1st edn. Birkhäuser, Basel

    Google Scholar 

  19. Schwenke D, Müller RK (2002) Dtsch Zeitschr Sportmed 53(1):25–26

    Google Scholar 

  20. World Anti-Doping Agency (2010) World anti-doping code. The 2011 prohibited list. International standard. http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-Prohibited-list/To_be_effective/WADA_Prohibited_List_2011_EN.pdf. Accessed 18 Jan 2011

  21. Lasne F, Martin L, Crepin N, de Ceaurriz J (2002) Anal Biochem 311:119–126

    Article  CAS  Google Scholar 

  22. World Anti-Doping Agency (2009) Harmonization of the method for the identification of recombinant erythropoietins (i.e. epoetins) and analogues (e.g. darbepoetin and methoxypolyethylene glycol-epoetin beta). http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-IS-Laboratories/WADA_TD2009EPO_EN.pdf. Accessed 8 Aug 2011

  23. Kohler M, Ayotte C, Desharnais P, Flenker U, Lüdke S, Thevis M, Völker-Schänzer E, Schänzer W (2008) Int J Sports Med 29(1)

  24. Yu N, Ho E, Wan T, Wong A (2010) Anal Bioanal Chem 396(7):2513–2521

    Article  CAS  Google Scholar 

  25. Sharpe K, Ashenden M, Schumacher Y (2006) Haematologica 91(3):356–363

    CAS  Google Scholar 

  26. Jelkmann W (2009) Curr Med Chem 16(10):1236–1247

    Article  CAS  Google Scholar 

  27. Reichel C (2011) Anal Bioanal Chem 401(2):463–481

    Article  CAS  Google Scholar 

  28. Roger SD, Mikhail A (2007) J Pharm Pharm Sci 10(3):405–410

    Google Scholar 

  29. Schellekens H (2009) NDT Plus 2(Suppl 1):i27–i36

    Article  CAS  Google Scholar 

  30. Jelkmann W (2010) Am J Hematol 85(10):771–780

    Article  Google Scholar 

  31. Brinks V, Hawe A, Basmeleh A, Joachin-Rodriguez L, Haselberg R, Somsen G, Jiskoot W, Schellekens H (2011) Pharm Res 28(2):386–393

    Article  CAS  Google Scholar 

  32. Macdougall IC, Ashenden M (2009) Adv Chronic Kidney Dis 16(2):117–130

    Article  Google Scholar 

  33. Neusüß C, Demelbauer U, Pelzing M (2005) Electrophoresis 26(7–8):1442–1450

    Article  Google Scholar 

  34. Balaguer E, Neusüß C (2006) Anal Chem 78(15):5384–5393

    Article  CAS  Google Scholar 

  35. Balaguer E, Neusüß C (2006) Chromatographia 64(5):351–357

    Article  CAS  Google Scholar 

  36. Taichrib A, Pelzing M, Pellegrino C, Rossi M, Neusüß C (2011) J Proteomics 74(7):958–966

    Article  CAS  Google Scholar 

  37. Storring PL, Tiplady RJ, Gaines Das RE, Stenning BE, Lamikanra A, Rafferty B, Lee J (1998) Br J Haematol 100(1):79–89

    Article  CAS  Google Scholar 

  38. Baker M (2008) Use of biosimilar EPO agents widespread at 2008 Tour de France. http://bleacherreport.com/articles/39836-use-of-biosimilar-epo-agents-widespread-at-2008-tour-de-france. Accessed 7 Nov 2011

  39. Erythropoietin. http://en.wikipedia.org/wiki/Erythropoietin. Accessed 7 Nov 2011

  40. Ongay S, Martín-Álvarez PJ, Neusüß C, de Frutos M (2010) Electrophoresis 31(19):3314–3325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support in the course of the announcement “Sicherung der Warenketten” of the Federal Ministry of Education and Research (BMBF) within the scope of the program “Forschung für die zivile Sicherheit” of the Federal Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Neusüß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taichrib, A., Pioch, M. & Neusüß, C. Multivariate statistics for the differentiation of erythropoietin preparations based on intact glycoforms determined by CE-MS. Anal Bioanal Chem 403, 797–805 (2012). https://doi.org/10.1007/s00216-012-5924-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5924-8

Keywords

Navigation