Analytical and Bioanalytical Chemistry

, Volume 403, Issue 9, pp 2493–2502 | Cite as

Is nontarget screening of emerging contaminants by LC-HRMS successful? A plea for compound libraries and computer tools

  • Marco Zedda
  • Christian Zwiener


This review focuses on the possibilities and limits of nontarget screening of emerging contaminants, with emphasis on recent applications and developments in data evaluation and compound identification by liquid chromatography–high-resolution mass spectrometry (HRMS). The general workflow includes determination of the elemental composition from accurate mass, a further search for the molecular formula in compound libraries or general chemical databases, and a ranking of the proposed structures using further information, e.g., from mass spectrometry (MS) fragmentation and retention times. The success of nontarget screening is in some way limited to the preselection of relevant compounds from a large data set. Recently developed approaches show that statistical analysis in combination with suspect and nontarget screening are useful methods to preselect relevant compounds. Currently, the unequivocal identification of unknowns still requires information from an authentic standard which has to be measured or is already available in user-defined MS/MS reference databases or libraries containing HRMS spectral information and retention times. In this context, we discuss the advantages and future needs of publicly available MS and MS/MS reference databases and libraries which have mostly been created for the metabolomic field. A big step forward has been achieved with computer-based tools when no MS library or MS database entry is found for a compound. The numerous search results from a large chemical database can be condensed to only a few by in silico fragmentation. This has been demonstrated for selected compounds and metabolites in recent publications. Still, only very few compounds have been identified or tentatively identified in environmental samples by nontarget screening. The availability of comprehensive MS libraries with a focus on environmental contaminants would tremendously improve the situation.


Liquid chromatography–high resolution mass spectrometry Accurate mass Molecular formula Emerging contaminant Nontarget analysis Database Computer tools In silico fragmentation 



The authors would like to thank Karina Zedda for reviewing this manuscript and three anonymous reviewers for their helpful comments.


  1. 1.
    Ferrer I, Thurman EM (2003) Trends Anal Chem 22(10):750–756CrossRefGoogle Scholar
  2. 2.
    Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) Environ Pollut 157(2):561–568CrossRefGoogle Scholar
  3. 3.
    Schultz MM, Furlong ET, Kolpin DW, Werner SL, Schoenfuss HL, Barber LB, Blazer VS, Norris DO, Vajda AM (2010) Environ Sci Technol 44(6):1918–1925CrossRefGoogle Scholar
  4. 4.
    Valcárcel Y, Alonso SG, Rodríguez-Gil JL, Maroto RR, Gil A, Catalá M (2011) Chemosphere 82(7):1062–1071CrossRefGoogle Scholar
  5. 5.
    Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) J Hydrol 389(3–4):416–428CrossRefGoogle Scholar
  6. 6.
    Wang C, Shi H, Adams CD, Gamagedara S, Stayton I, Timmons T, Ma Y (2011) Water Res 45(4):1818–1828CrossRefGoogle Scholar
  7. 7.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36(6):1202–1211CrossRefGoogle Scholar
  8. 8.
    Ternes TA, Joss A, Siegrist H (2004) Environ Sci Technol 38(20):392A–399ACrossRefGoogle Scholar
  9. 9.
    Richardson SD, Ternes TA (2011) Anal Chem 83(12):4614–4648CrossRefGoogle Scholar
  10. 10.
    Richardson SD (2010) Anal Chem 82(12):4742–4774CrossRefGoogle Scholar
  11. 11.
    Perez S, Eichhorn P, Celiz MD, Aga DS (2006) Anal Chem 78(6):1866–1874CrossRefGoogle Scholar
  12. 12.
    Escher BI, Fenner K (2011) Environ Sci Technol 45(9):3835–3847Google Scholar
  13. 13.
    Kosjek T, Heath E (2008) Trends Anal Chem 27(10):807–820CrossRefGoogle Scholar
  14. 14.
    Zwiener C (2007) Anal Bioanal Chem 387(4):1159–1162CrossRefGoogle Scholar
  15. 15.
    Helbling DE, Hollender J, Kohler H-PE, Singer H, Fenner K (2010) Environ Sci Technol 44(17):6621–6627CrossRefGoogle Scholar
  16. 16.
    Matamoros V, Jover E, Bayona J (2009) Anal Bioanal Chem 393(3):847–860CrossRefGoogle Scholar
  17. 17.
    von der Ohe PC, Dulio V, Slobotnik J, De Deckere E, Kuehne R, Ebert R-U, Ginebreda A, De Cooman W, Schueuermann G, Brack (2011) Sci Total Environ 409(11):2064–2077Google Scholar
  18. 18.
    Gros M, Petrovic M, Barcelo D (2006) Anal Bioanal Chem 386(4):941–952CrossRefGoogle Scholar
  19. 19.
    Zwiener C, Frimmel FH (2004) Anal Bioanal Chem 378(4):851–861CrossRefGoogle Scholar
  20. 20.
    Zwiener C, Frimmel FH (2004) Anal Bioanal Chem 378(4):862–874CrossRefGoogle Scholar
  21. 21.
    Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S (2010) J Chromatogr A 1217(44):6791–6806CrossRefGoogle Scholar
  22. 22.
    Hao C, Zhao X, Tabe S, Yang P (2008) Environ Sci Technol 42(11):4068–4075CrossRefGoogle Scholar
  23. 23.
    Noedler K, Licha T, Bester K, Sauter M (2010) J Chromatogr A 1217(42):6511–6521CrossRefGoogle Scholar
  24. 24.
    Lara-Martin PA, Gonzalez-Mazo E, Brownawell BJ (2011) J Chromatogr 1218(30):4799–4807CrossRefGoogle Scholar
  25. 25.
    Rodil R, Quintana JB, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D (2009) J Chromatogr 1216(14):2958–2969CrossRefGoogle Scholar
  26. 26.
    Liu FM, Bischoff G, Pestemer W, Xu W, Kofoet A (2006) Chromatographia 63(5–6):233–237CrossRefGoogle Scholar
  27. 27.
    Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, Horning S (2006) Anal Chem 78(7):2113–2120CrossRefGoogle Scholar
  28. 28.
    Ibáñez M, Sancho JV, Hernández F, McMillan D, Rao R (2008) Trends Anal Chem 27(5):481–489CrossRefGoogle Scholar
  29. 29.
    Gomez MJ, Gomez-Ramos MM, Malato O, Mezcua M, Fernandez-Alba AR (2010) J Chromatogr 1217(45):7038–7054CrossRefGoogle Scholar
  30. 30.
    Krauss M (2010) Anal Bioanal Chem 397:943–951CrossRefGoogle Scholar
  31. 31.
    Kind T, Fiehn O (2010) Bioanal Rev 2(1–4):23–60CrossRefGoogle Scholar
  32. 32.
    Marshall AG, Rodgers RP (2008) Proc Natl Acad Sci USA 105(47):18090–18095CrossRefGoogle Scholar
  33. 33.
    Kim S, Rodgers RP, Marshall AG (2006) Int J Mass Spectrom 251(2–3):260–265Google Scholar
  34. 34.
    Want E, Masson P (2011) In: Metz TO (ed) Metabolic profiling. Methods in molecular biology, vol 708. Springer, Berlin, pp 277–298Google Scholar
  35. 35.
    Schymanski EL, Schulze T, Hermans J, Brack W (2011) In: Brack W (ed) Handbook of environmental chemistry, vol.15. Springer, Berlin, pp 167–198Google Scholar
  36. 36.
    Neumann S, Böcker S (2010) Anal Bioanal Chem 398(7):2779–2788CrossRefGoogle Scholar
  37. 37.
    Hernández F, Portolés T, Pitarch E, López FJ (2007) Anal Chem 79(24):9494–9504CrossRefGoogle Scholar
  38. 38.
    García-Reyes JF, Hernando MD, Molina-Díaz A, Fernández-Alba AR (2007) Trends Anal Chem 26(8):828–841CrossRefGoogle Scholar
  39. 39.
    Hogenboom AC, van Leerdam JA, de Voogt P (2009) J Chromatogr A 1216(3):510–519CrossRefGoogle Scholar
  40. 40.
    Hernández F, Portolés T, Pitarch E, López FJ (2011) Trends Anal Chem 30(2):388–400CrossRefGoogle Scholar
  41. 41.
    Pelander A, Tyrkko E, Ojanpera I (2009) Rapid Commun Mass Spectrom 23(4):506–514CrossRefGoogle Scholar
  42. 42.
    Wolf S, Schmidt S, Muller-Hannemann M, Neumann S (2010) BMC Bioinform 11(1):148CrossRefGoogle Scholar
  43. 43.
    Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF (2008) Anal Chem 80(14):5574–5582CrossRefGoogle Scholar
  44. 44.
    Kormos JL, Schulz M, Wagner M, Ternes TA (2009) Anal Chem 81(22):9216–9224CrossRefGoogle Scholar
  45. 45.
    Kormos JL, Schulz M, Kohler H-PE, Ternes TA (2010) Environ Sci Technol 44(13):4998–5007CrossRefGoogle Scholar
  46. 46.
    Ibáñez M, Sancho JV, Pozo ÓJ, Niessen W, Hernández F (2005) Rapid Commun Mass Spectrom 19(2):169–178CrossRefGoogle Scholar
  47. 47.
    Bobeldijk I, Vissers JPC, Kearney G, Major H, van Leerdam JA (2001) J Chromatogr A 929(1–2):63–74Google Scholar
  48. 48.
    Hao H, Cui N, Wang G, Xiang B, Liang Y, Xu X, Zhang H, Yang J, Zheng C, Wu L, Gong P, Wang W (2008) Anal Chem 80(21):8187–8194CrossRefGoogle Scholar
  49. 49.
    Meng C-K, Zweigenbaum JA (2010) J AOAC 93(2):703–711Google Scholar
  50. 50.
    Bester K, Huehnerfuss H, Lange W, Theobald N (1997) Sci Total Environ 207(2–3):111–118CrossRefGoogle Scholar
  51. 51.
    Bester K, Theobald N (2000) Water Res 34(8):2277–2282CrossRefGoogle Scholar
  52. 52.
    Mortishire-Smith RJ, O'Connor D, Castro-Perez JM, Kirby J (2005) Rapid Commun Mass Spectrom 19(18):2659–2670CrossRefGoogle Scholar
  53. 53.
    Weigel S, Bester K, Huehnerfuss H (2001) J Chromatogr A 912(1):151–161CrossRefGoogle Scholar
  54. 54.
    Petri M, Jiang JQ, Maier M (2010) Water Sci Technol Water Supply 10(5):806–814CrossRefGoogle Scholar
  55. 55.
    Grigoriadou A, Schwarzbauer J (2011) Water Air Soil Pollut 214(1):623–643CrossRefGoogle Scholar
  56. 56.
    Edler B, Zwiener C, Frimmel FH (1997) Fresenius J Anal Chem 359(3):288–292CrossRefGoogle Scholar
  57. 57.
    Bester K, Huehnerfuss H, Lange W, Rimkus GG, Theobald N (1998) Water Res 32(6):1857–1863CrossRefGoogle Scholar
  58. 58.
    Zwiener C, Frimmel FH (1998) Fresenius J Anal Chem 360(7–8):820–823CrossRefGoogle Scholar
  59. 59.
    Gómez MJ, Gómez-Ramos MM, Agueera A, Mezcua M, Herrera S, Fernández-Alba AR (2009) J Chromatogr A 1216(18):4071–4082CrossRefGoogle Scholar
  60. 60.
    Cappiello A, Famiglini G, Palma P, Pierini E, Termopoli V, Trufelli H (2011) Mass Spectrom Rev 30(6):1242–1255CrossRefGoogle Scholar
  61. 61.
    Cappiello A, Famiglini G, Termopoli V, Trufelli H, Zazzeroni R, Jacquoilleot S, Radici L, Saib O (2011) Anal Chem 83(22):8537–8542CrossRefGoogle Scholar
  62. 62.
    Mueller A, Schulz W, Ruck WK, Weber WH (2011) Chemosphere 85(8):1211–1219CrossRefGoogle Scholar
  63. 63.
    Müller A, Schulz W, Weber W (2009) Paper presented at the 75. Jahrestagung der Wasserchemischen Gesellschaft, Stralsund, 18–20 May 2009Google Scholar
  64. 64.
    Ellis L, Wackett L, Liu Y, Turnbull M (2011) University of Minnesota. Accessed Dec 2011
  65. 65.
    Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Environ Sci Technol 43(18):7039–7046CrossRefGoogle Scholar
  66. 66.
    Hernandez F, Ibanez M, Sancho JV, McMillan D, Rao R (2008) Trends Anal Chem 27(5):481–489CrossRefGoogle Scholar
  67. 67.
    Gomez C, Segura J, Monfort N, Suominen T, Leinonen A, Vahermo M, Yli-Kauhaluoma J, Ventura R (2010) Anal Bioanal Chem 397(7):2903–2916CrossRefGoogle Scholar
  68. 68.
    Dresen S, Ferreiros N, Gnann H, Zimmermann R, Weinmann W (2010) Anal Bioanal Chem 396(7):2425–2434CrossRefGoogle Scholar
  69. 69.
    Volna K, Holcapek M, Kolarova L, Lemr K, Caslavsky J, Kacer P, Poustka J, Hubalek M (2008) Rapid Commun Mass Spectrom 22(2):101–108CrossRefGoogle Scholar
  70. 70.
    Bristow AWT, Webb KS, Lubben AT, Halket J (2004) Rapid Commun Mass Spectrom 18(13):1447–1454CrossRefGoogle Scholar
  71. 71.
    Hopley C, Bristow T, Lubben A, Simpson A, Bul E, Klagkou K, Herniman J, Langley J (2008) Rapid Commun Mass Spectrom 22(12):1779–1786CrossRefGoogle Scholar
  72. 72.
    Milman BL (2005) Rapid Commun Mass Spectrom 19(19):2833–2839CrossRefGoogle Scholar
  73. 73.
    Pavlic M, Schubert B, Libiseller K, Oberacher H (2010) Forensic Sci Int 197(1–3):40–47CrossRefGoogle Scholar
  74. 74.
    Oberacher H, Pavlic M, Libiseller K, Schubert B, Sulyok M, Schuhmacher R, Csaszar E, Kofeler HC (2009) J Mass Spectrom 44(4):485–493CrossRefGoogle Scholar
  75. 75.
    Oberacher H, Pavlic M, Libiseller K, Schubert B, Sulyok M, Schuhmacher R, Csaszar E, Kofeler HC (2009) J Mass Spectrom 44(4):494–502Google Scholar
  76. 76.
    Sana TR, Roark JC, Li X, Waddell K, Fischer SM (2008) J Biomol Tech 19(4):258–266Google Scholar
  77. 77.
    Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) Ther Drug Monit 27(6):747–751CrossRefGoogle Scholar
  78. 78.
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) J Mass Spectrom 45(7):703–714CrossRefGoogle Scholar
  79. 79.
    Network of reference laboratories for monitoring of emerging environmental pollutants (Norman) (2011) Accessed Dec 2011
  80. 80.
    Zweckverband Landeswasserversorgung (2010) Accessed Dec 2011
  81. 81.
    Sparkman OD (2011) NIST 11: what's new and what value does it offer? Part I. Available via
  82. 82.
    Sparkman OD (2011) NIST 11: what's new and what value does it offer? Part II. Available via
  83. 83.
    Wiley Registry of Mass Spectral Data, 9th Edition (2011). John Wiley & SonsGoogle Scholar
  84. 84.
    Hill AW, Mortishire-Smith RJ (2005) Rapid Commun Mass Spectrom 19(21):3111–3118CrossRefGoogle Scholar
  85. 85.
    National Center for Biotechnology Information (2011) Accessed Dec 2011
  86. 86.
    Kanehisa Laboratories (2011) Accessed Dec 2011
  87. 87.
    Royal Society of Chemistry (2011) Accessed Dec 2011
  88. 88.
    Levsen K, Schiebel H-M, Terlouw JK, Jobst KJ, Elend M, Preiß A, Thiele H, Ingendoh A (2007) J Mass Spectrom 42(8):1024–1044CrossRefGoogle Scholar
  89. 89.
    Jobelius C, Ruth B, Griebler C, Meckenstock RU, Hollender J, Reineke A, Frimmel FH, Zwiener C (2010) Environ Sci Technol 45(2):474–481CrossRefGoogle Scholar
  90. 90.
    Zwiener C, Glauner T, Sturm J, Woerner M, Frimmel FH (2009) Anal Bioanal Chem 395(6):1885–1892CrossRefGoogle Scholar
  91. 91.
    Schymanski EL, Meringer M, Brack W (2011) Anal Chem 83(3):903–912CrossRefGoogle Scholar
  92. 92.
    Ulrich N, Schuurmann G, Brack W (2011) J Chromatogr 1218(45):8192–8196CrossRefGoogle Scholar
  93. 93.
    Schymanski EL, Meinert C, Meringer M, Brack W (2008) Anal Chim Acta 615(2):136–147CrossRefGoogle Scholar
  94. 94.
    Prasse C, Schluesener MP, Schulz R, Ternes TA (2010) Environ Sci Technol 44(5):1728–1735CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Environmental Analytical Chemistry, Center for Applied Geoscience (ZAG)Eberhard Karls University TübingenTübingenGermany

Personalised recommendations