Advertisement

Analytical and Bioanalytical Chemistry

, Volume 403, Issue 9, pp 2503–2518 | Cite as

Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review

  • Frank T. LangeEmail author
  • Marco Scheurer
  • Heinz-J. Brauch
Review

Abstract

An overview is given of existing trace analytical methods for the determination of seven popular artificial sweeteners [acesulfame (ACE), aspartame, cyclamate (CYC), neotame, neohesperidine dihydrochalcone, saccharin (SAC), and sucralose (SUC)] from aqueous environmental samples. Liquid chromatography–electrospray ionization tandem mass spectrometry and liquid chromatography–electrospray ionization high-resolution mass spectrometry are the methods most widely applied, either directly or after solid-phase extraction. Limits of detection and limits of quantification down to the low nanogram per liter range can be achieved. ACE, CYC, SAC, and SUC were detected in wastewater treatment plants in high microgram per liter concentrations. Per capita loads of individual sweeteners can vary within a wide range depending on their use in different countries. Whereas CYC and SAC are usually degraded by more than 90 % during wastewater treatment, ACE and SUC pass through wastewater treatment plants mainly unchanged. This suggests their use as virtually perfect markers for the study of the impact of wastewater on source waters and drinking waters. In finished water of drinking water treatment plants using surface-water-influenced source water, ACE and SUC were detected in concentrations up to 7 and 2.4 μg/L, respectively. ACE was identified as a precursor of oxidation byproducts during ozonation, resulting in an aldehyde intermediate and acetic acid. Although the concentrations of ACE and SUC are among the highest measured for anthropogenic trace pollutants found in surface water, groundwater, and drinking water, the levels are at least three orders of magnitude lower than organoleptic threshold values. However, ecotoxicology studies are scarce and have focused on SUC. Thus, further research is needed both on identification of transformation products and on the ecotoxicological impact of artificial sweeteners and their transformation products.

Keywords

Artificial sweeteners Acesulfame Sucralose Wastewater Surface water Groundwater Drinking water Ozonation 

Notes

Acknowledgments

We thank Michael Fleig for providing the artificial sweetener data and discharges of the AWBR and ARW Rhine monitoring programs used for the preparation of Figs. 2 and 3 and Florian R. Storck for many fruitful discussions.

Supplementary material

216_2012_5892_MOESM1_ESM.pdf (512 kb)
ESM 1 (PDF 511 kb)

References

  1. 1.
    Kroger M, Meister K, Kava R (2006) Compr Rev Food Sci Food Saf 5:35–47CrossRefGoogle Scholar
  2. 2.
    Shallenberger RS, Acree TE (1967) Nature 216:480–482CrossRefGoogle Scholar
  3. 3.
    Yang XY, Chong Y, Yan AX, Chen JC (2011) Food Chem 128:653–658CrossRefGoogle Scholar
  4. 4.
    Giger W (2009) Anal Bioanal Chem 393:37–44CrossRefGoogle Scholar
  5. 5.
    Richardson SD (2009) Anal Chem 81:4645–4677CrossRefGoogle Scholar
  6. 6.
    Richardson SD (2010) Anal Chem 82:4742–4774CrossRefGoogle Scholar
  7. 7.
    Richardson SD, Ternes TA (2011) Anal Chem 83:4614–4648CrossRefGoogle Scholar
  8. 8.
    Brorström-Lundén E, Svenson A, Viktor T, Woldegiogis A, Remberger M, Kaj L, Dye C, Bjerke A, Schlabach M (2008) Measurements of sucralose in the Swedish screening program 2007 - part I, sucralose in surface and STP samples. IVL report B1769. IVL Swedish Environmental Institute Ltd. http://www.ivl.se/webdav/files/B-rapporter/B1769.pdf. Accessed 7 Mar 2012
  9. 9.
    Brorström-Lundén E, Svenson A, Viktor T, Woldegiogis A, Remberger M, Kaj L, Dye C, Bjerke A, Schlabach M (2008) Measurements of sucralose in the Swedish screening program 2007 - part II; sucralose in biota samples and regional STP samples. IVL report B1795. IVL Swedish Environmental Institute Ltd. http://www.ivl.se/webdav/files/B-rapporter/B1795.pdf
  10. 10.
    Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) Environ Pollut 157:561–568CrossRefGoogle Scholar
  11. 11.
    Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G (2009) J Chromatogr A 1216:1126–1131CrossRefGoogle Scholar
  12. 12.
    Buerge IJ, Buser HR, Kahle M, Muller MD, Poiger T (2009) Environ Sci Technol 43:4381–4385CrossRefGoogle Scholar
  13. 13.
    Scheurer M, Brauch HJ, Lange FT (2009) Anal Bioanal Chem 394:1585–1594CrossRefGoogle Scholar
  14. 14.
    Mead RN, Morgan JB, Avery J, Kieber RJ, Kirk AM, Skrabal SA, Willey JD (2009) Mar Chem 116:13–17CrossRefGoogle Scholar
  15. 15.
    Scheurer M, Storck FR, Graf C, Brauch HJ, Ruck W, Lev O, Lange FT (2011) J Environ Monit 13:966–973CrossRefGoogle Scholar
  16. 16.
    Van Stempvoort DR, Roy JW, Brown SJ, Bickerton G (2011) J Hydrol 401:126–133CrossRefGoogle Scholar
  17. 17.
    Soh L, Connors KA, Brooks BW, Zimmerman J (2011) Environ Sci Technol 45:1363–1369CrossRefGoogle Scholar
  18. 18.
    Scheurer M, Godejohann M, Wick A, Happel O, Ternes T, Brauch HJ, Ruck W, Lange FT (2011) Environ Sci Pollut Res Int. doi: 10.1007/s11356-011-0618-x
  19. 19.
    Renwick AG (1986) Xenobiotica 16:1057–1071CrossRefGoogle Scholar
  20. 20.
    Grice HC, Goldsmith LA (2000) Food Chem Toxicol 38:S1–S6Google Scholar
  21. 21.
    Rodero AB, Rodero LD, Azoubel R (2009) Int J Morphol 27:239–244CrossRefGoogle Scholar
  22. 22.
    Schiffman SS, Gatlin CA (1993) Neurosci Biobehav Rev 17:313–345CrossRefGoogle Scholar
  23. 23.
    Bundesinstitut für Risikobewertung (BfR) (2003) Bewertung von Süßstoffen - Information des BfR vom 21. August 2003. http://www.bfr.bund.de/cm/343/bewertung_von_suessstoffen.pdf. Accessed 23 Nov 2011
  24. 24.
    Zygler A, Wasik A, Namiesnik J (2009) Trends Anal Chem 28:1082–1102CrossRefGoogle Scholar
  25. 25.
    Scheurer M, Storck FR, Brauch HJ, Lange FT (2010) Water Res 44:3573–3584CrossRefGoogle Scholar
  26. 26.
    Buerge IJ, Keller M, Buser HR, Müller MD, Poiger T (2011) Environ Sci Technol 45:615–621CrossRefGoogle Scholar
  27. 27.
    Müller CE, Gerecke AC, Alder AC, Scheringer M, Hungerbühler K (2011) Environ Pollut 159:1419–1426CrossRefGoogle Scholar
  28. 28.
    Minten J, Adolfsson-Erici M, Bjorlenius B, Alsberg T (2011) Int J Environ Anal Chem 91:357–366CrossRefGoogle Scholar
  29. 29.
    Schmid Neset TS, Singer H, Longree P, Bader HP, Scheidegger R, Wittmer A, Andersson JCM (2010) Sci Total Environ 408:3261–3269CrossRefGoogle Scholar
  30. 30.
    Ferrer I, Thurman EM (2010) J Chromatogr A 1217:4127–4134CrossRefGoogle Scholar
  31. 31.
    Morlock GE, Schuele L, Grashorn S (2011) J Chromatogr A 1218:2745–2753CrossRefGoogle Scholar
  32. 32.
    Prasse C, Wagner M, Schulz R, Ternes TA (2011) Environ Sci Technol 45:2761–2769CrossRefGoogle Scholar
  33. 33.
    Engelhardt I, Piepenbrink M, Trauth N, Stadler S, Kludt C, Schulz M, Schüth C, Ternes TA (2011) J Hydrol 400:255–266CrossRefGoogle Scholar
  34. 34.
    Oppenheimer J, Eaton A, Badruzzaman M, Haghani AW, Jacangelo JG (2011) Water Res 45:4019–4027CrossRefGoogle Scholar
  35. 35.
    Zygler A, Wasik A, Namiesnik J (2010) Talanta 82:1742–1748CrossRefGoogle Scholar
  36. 36.
    Van Stempvoort DR, Robertson WD, Brown SJ (2011) Ground Water Monit Remediat 31:95–102Google Scholar
  37. 37.
    Götz C, Hollender J, Kase R (2011) Mikroverunreinigungen - Beurteilungskonzept für organische Spurenstoffe aus kommunalem Abwasser. Studie im Auftrag des BAFU. Eawag: Das Wasserforschungsinstitut des ETH-Bereichs, Dübendorf. EAWAG_06339Google Scholar
  38. 38.
    Longrée P, Singer H, Moschet C, Goetz C, Schärer M, Keusen M (2011) Gas Wasser Abwasser 7:495–505Google Scholar
  39. 39.
    Torres CI, Ramakrishna S, Chiu CA, Nelson KG, Westerhoff P, Krajmalnik-Brown R (2011) Environ Eng Sci 28:325–331CrossRefGoogle Scholar
  40. 40.
    US Food and Drug Administration (1998) Fed Regist 63:16417–16433Google Scholar
  41. 41.
    US Food and Drug Administration (1999) Fed Regist 64:43908–43909Google Scholar
  42. 42.
    Eidgenössisches Departement des Innern (EDI). Verordnung des EDI über die in Lebensmitteln zulässigen Zusatzstoffe (Zusatzstoffverordnung, ZuV) vom 23.05.2005. Die Bundesbehörden der Schweizerischen Eidgenossenschaft. The document number in the Swiss register (Systematische Sammlung des Bundesrechts) is SR 817.022.31.Google Scholar
  43. 43.
    IVL Swedish Environmental Research Institute (2011). Sucralose is spread into the environment. http://www.ivl.se/english/startpage/press/news/news/sucraloseisspreadintotheenvironment.5.7df4c4e812d2da6a416800087158.html. Accessed 28 Nov 2011
  44. 44.
    Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft. Verordnung zur Änderung der Zusatzstoffverordnung und anderer lebensmittelrechtlicher Verordnungen, BGBl. 2005 Teil I Nr 5, Bonn, 25. Januar 2005. Bundesanzeiger Verlagsgesellschaft mbH, AmsterdamerGoogle Scholar
  45. 45.
    Singer H, Huntscha S, Hollender J, Mazacek J (2009) Multikomponenten-Screening für den Rhein bei Basel. Final report. Eawag, DübendorfGoogle Scholar
  46. 46.
    Arbeitsgemeinschaft Wasserwerke Bodensee Rhein e.V. (2011) 42. Jahresbericht 2010. Geschäftsstelle der Arbeitsgemeinschaft Wasserwerke Bodensee-Rhein (AWBR), FreiburgGoogle Scholar
  47. 47.
    Arbeitsgemeinschaft Rheinwasserwerke e.V. (2011) 67. Jahresbericht 2010. Geschäftsstelle der Arbeitsgemeinschaft Rhein-Wasserwerke e.V. (ARW), KölnGoogle Scholar
  48. 48.
    Wirtz, F (2009) Environ Sci Pollut Res 16 (Suppl 1):S112–S115Google Scholar
  49. 49.
    Norwegian Pollution Control Authority (2009) Silver, platinum, sucralose, bisphenol A, tetrabrombisphenol A, siloxanes, phthalates (DEHP) and phosphororganic flame retardants, screening of new contaminants in samples from the Norwegian arctic. Statens forurensningstilsyn (SFT), OsloGoogle Scholar
  50. 50.
    Bayerisches Landesamt für Umwelt (2011). Untersuchung von Oberflächengewässern und Rohwässern auf Arzneimittelwirkstoffe, ausgewählte Metaboliten und weitere polare Spurenstoffe - September 2009. Bayerisches Landesamt für Umwelt, Augsburg. http://www.lfu.bayern.de/analytik_stoffe/arzneimittelwirkstoffe/doc/stoffkonzentrationen_0909.pdf. Accessed 23 Nov 2011
  51. 51.
    Storck FR, Brauch HJ, Dimkic M, Boreli-Zdravkovic D, Petkovic A, Vasiljevic L (2011) In: IAWD annual report 2009/2010. pp 65–73. Internationale Arbeitsgemeinschaft der Wasserwerke im Donaueinzugsgebiet (IAWD), ViennaGoogle Scholar
  52. 52.
    DVGW Water Technology Center (TZW) Institute for Water Research (Institut für Wasserforschung) Dortmund (IfW) (2011) DVGW project W 1/0210-A and -B, Acesulfame as a tracer for the quantification of wastewater and surface water impact on bank filtrate and groundwater - phase IGoogle Scholar
  53. 53.
    Schmidt CK, Fleig M, Sacher F, Brauch HJ (2004) Environ Pollut 131:107–124CrossRefGoogle Scholar
  54. 54.
    Mawhinney DB, Young RB, Vanderford BJ, Borch T, Snyder SA (2011) Environ Sci Technol 45:8716–8722CrossRefGoogle Scholar
  55. 55.
    Schleheck D, Cook AM (2003) Arch Microbiol 179:191–196Google Scholar
  56. 56.
    Labare MP, Alexander M (1993) Environ Toxicol Chem 12:797–804CrossRefGoogle Scholar
  57. 57.
    Labare MP, Alexander M (1994) Appl Microbiol Biotechnol 42:173–178CrossRefGoogle Scholar
  58. 58.
    Adolfsson-Erici M, Eriksson Wiklung AK, Alsberg T, Breitholz M, Ek C, Minten J (2009) Undersökning av det syntetiska sötningsmedlet sukralos med avseende på eventuella ekotoxikologiska effekter. ITM-rapport 181. Department of Applied Environmental Sciences, Stockholm UniversityGoogle Scholar
  59. 59.
    Shen JC, Lu SG, Zhuang ZX, Wang XR, Lee FSC (2005) Int J Mass Spectrom 243:163–169CrossRefGoogle Scholar
  60. 60.
    Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, von Gunten U, Siegrist H (2009) Environ Sci Technol 43:7862–7869CrossRefGoogle Scholar
  61. 61.
    Marcus P (2005) Development and validation of a rapid laboratory test for assessment of the adsorbability of organic single substances onto activated carbon. Entwicklung und Validierung eines Laborschnelltests zur Beurteilung der Adsorbierbarkeit von organischen Einzelstoffen an Aktivkohle (in German). PhD thesis, University of DresdenGoogle Scholar
  62. 62.
    Buhlert J, Gottesmann P, Grabher R, Brezger H (2011) Süßstoffspuren in Natürlichen Mineralwässern als Kriterium für eine anthropogene Beeinflussung, Wasser 2011. Poster Tr04. Kurzreferate, Jahrestagung der Wasserchemischen Gesellschaft, Fachgruppe in der Gesellschaft Deutscher Chemiker, 30.05.-01.06.2011Google Scholar
  63. 63.
    Hjorth M, Hansen JH, Camus L (2010) Chem Ecol 26:385–393CrossRefGoogle Scholar
  64. 64.
    Lillicrap A, Langford K, Tollefsen KE (2011) Environ Toxicol Chem 30:673–681CrossRefGoogle Scholar
  65. 65.
    Huggett DB, Stoddard KI (2011) Food Chem Toxicol 49:2575–2579CrossRefGoogle Scholar
  66. 66.
    Haber B, von Rymon Lipinski GE, Rathjen S (2006) In: Mitchell H (ed) Sweeteners and sugar alternatives in food technology. Blackwell, OxfordGoogle Scholar
  67. 67.
    Hunt F, Bopp BA, Price P (2011) In: O’Brien-Nabors L (ed) Alternative sweeteners, 4th edn. CRC, Boca RatonGoogle Scholar
  68. 68.
    Sardesai VM, Waldshan TH (1991) J Nutr Biochem 2:236–244CrossRefGoogle Scholar
  69. 69.
    United States National Library of Medicine (2011). ChemIDplus Advanced. http://chem.sis.nlm.nih.gov/chemidplus/. Accessed 23 Nov 2011
  70. 70.
    EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Foods (AFC) (2007) EFSA J 581:1–43Google Scholar
  71. 71.
    Borrego F (2011) In: O’Brien-Nabors L (ed) Alternative sweeteners, 4th edn. CRC, Boca RatonGoogle Scholar
  72. 72.
    Jenner MR, Smithson A (1989) J Food Sci 54:1646–1649CrossRefGoogle Scholar
  73. 73.
    The Nutra Sweet Company (2010) Nutra Sweet brand sweetener - ingredient overview bulletin no. AG-TB-03-001. The Nutra Sweet Company, Chicago. http://www.nutrasweet.com/articles/sendfile.asp?Id=130&filename=AG-TB-03-001.pdf. Accessed 5 Jun 2010
  74. 74.
    Mayhew DA, Meyers BI, Stargel WW, Comer CP, Andress SE, Butchko HH (2011) In: O’Brien-Nabors L (ed) Alternative sweeteners, 4th edn. CRC, Boca RatonGoogle Scholar
  75. 75.
    Froloff N, Lloret E, Martinez JM, Faurion A (1998) Chem Senses 23:197–206CrossRefGoogle Scholar
  76. 76.
    Kojima S, Ichibaga H, Iguchi S (1966) Chem Pharm Bull 14:965–971CrossRefGoogle Scholar
  77. 77.
    ChemAxon Ltd (2012) New & improved ClogP calculator. http://intro.bio.umb.edu/111-112/OLLM/111F98/newclogp.html. Accessed 2 Feb 2012
  78. 78.
    Skwierczynski RD, Connors KA (1993) Pharm Res 10:1174–1180CrossRefGoogle Scholar
  79. 79.
    Nofre C, Tinti JM (2000) Food Chem 69:245–257CrossRefGoogle Scholar
  80. 80.
    European Commission - Scientific Committee on Food (SCF) (2000) Revised opinion on cyclamic acid and its sodium and calcium salts - SCF/CS/EDUL/192 final. http://ec.europa.eu/food/fs/sc/scf/out53_en.pdf. Accessed 9 Feb 2012
  81. 81.
    Roberts A, Renwick AG, Sims J, Snodin DJ (2000) Food Chem Toxicol 38:S31–S41CrossRefGoogle Scholar
  82. 82.
    EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Foods (AFC) (2006) EFSA J 356:1–44Google Scholar
  83. 83.
    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) (2010) EFSA J 8(9):1065. doi: 10.2903/j.efsa.2010.1065 Google Scholar
  84. 84.
    European Commission - Scientific Committee on Food (SCF) (2000) Opinion - Re-evaluation of acesulfame K with reference to the previous SCF opinion of 1991 - SCF/CS/ADD/EDUL/194 final. http://ec.europa.eu/food/fs/sc/scf/out52_en.pdf. Accessed 28 Nov 2011
  85. 85.
    European Commission - Scientific Committee on Food (SCF) (1997) Opinion on saccharin and its sodium, potassium and calcium salts - annex III to document III/5157/97, CS/ADD/EDUL/148 final. http://ec.europa.eu/food/fs/sc/oldcomm7/out26_en.pdf. Accessed 28 Nov 2011
  86. 86.
    WHO (1991) Evaluation of certain food additives and contaminants. WHO technical report series 806. http://whqlibdoc.who.int/trs/WHO_TRS_806.pdf. Accessed 28 Nov 2011
  87. 87.
    Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2003) Summary and conclusions of the sixty-first meeting - JECFA/61/SC. ftp://ftp.fao.org/es/esn/jecfa/jecfa61sc.pdf. Accessed 28 Nov 2011
  88. 88.
    Lee CO, Howe KJ, Thomson BM (2010) Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and EDCs from wastewater. Report to New Mexico Environment Department. The University of New Mexico. http://www.unm.edu/~howe/UNM%20Howe%20Final%20PPCP%20Ozone-Biofiltration%20Report.pdf. Accessed 7 Mar 2012

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Frank T. Lange
    • 1
    Email author
  • Marco Scheurer
    • 1
  • Heinz-J. Brauch
    • 1
  1. 1.Water Technology Center Karlsruhe (TZW)KarlsruheGermany

Personalised recommendations