Skip to main content
Log in

Imaging translocation and transformation of bioavailable selenium by Stanleya pinnata with X-ray microscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Selenium hyperaccumulator Stanleya pinnata, Colorado ecotype, was supplied with water-soluble and biologically available selenate or selenite. Selenium distribution and tissue speciation were established using X-ray microscopy (micro-X-ray fluorescence and transmission X-ray microscopy) in two dimensions and three dimensions. The results indicate that S. pinnata tolerates, accumulates, and volatilizes significant concentrations of selenium when the inorganic form supplied is selenite and may possess novel metabolic capacity to differentiate, metabolize, and detoxify selenite concentrations surpassing field concentrations. The results also indicate that S. pinnata is a feasible candidate to detoxify selenium-polluted soil sites, especially locations with topsoil polluted with soluble and biologically available selenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. White PJ, Bowen HC, Parmaguru P, Fritz M, Sparacklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) J Exp Bot 55:1927–1937

    Article  CAS  Google Scholar 

  2. Presser TS, Sylvester MA (1994) Environ Manag 18:423–436

    Article  Google Scholar 

  3. Zhang HH, Wu ZF (2008) J Environ Qual 37:780–787

    Article  CAS  Google Scholar 

  4. Brown TA, Shrift A (1982) Biol Rev 57:1–149

    Article  Google Scholar 

  5. Yang G, Wang S (1983) Am J Clin Nutr 37:872–881

    CAS  Google Scholar 

  6. Bauer F (1997) Electron Green J 1:1–9

    Google Scholar 

  7. Daniels LA (1996) Biol Trace Elem Res 54:185–199

    Article  CAS  Google Scholar 

  8. Minorsky PV (2003) Plant Physiol 133:14–15

    Article  Google Scholar 

  9. Frankenberger WT, Engberg RA (1998) Environmental chemistry of selenium. Dekker, Basel

    Google Scholar 

  10. Brown GE, Foster A, Ostergren J (1999) Proc Natl Acad Sci U S A 96:3388–3395

    Article  CAS  Google Scholar 

  11. Long RHB, Benson SM (1990) J Environ Qual 19:302–311

    Article  CAS  Google Scholar 

  12. Tonkunaga TK, Benson SM (1990) J Environ Qual 19:302–311

    Google Scholar 

  13. Zhang Y, Frankenberger WT (2002) J Environ Qual 31:1124–1128

    Article  CAS  Google Scholar 

  14. Canada H (1992) Selenium. Government of Canada, Ottawa

    Google Scholar 

  15. Tonkunaga TK, Benson SM (1992) J Environ Qual 21:447–457

    Google Scholar 

  16. Zawislanski PT, Benson SM (2003) Environ Sci Technol 37:2415–2420

    Article  CAS  Google Scholar 

  17. de Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TSU, Yeh L, Terry N (1998) Plant Physiol 117:1487–1494

    Article  Google Scholar 

  18. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Plant Biol 4:1–11

    Google Scholar 

  19. Lee A, Lin ZQ, Pickering IJ, Terry N (2001) Planta 213:977–980

    Article  CAS  Google Scholar 

  20. Freeman JL, Zang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Plant Physiol 142:124–134

    Article  CAS  Google Scholar 

  21. Feist LJ, Parker DR (2001) Plant Physiol 149:61–69

    CAS  Google Scholar 

  22. Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang Y (2003) Plant Soil 249:157–165

    Article  CAS  Google Scholar 

  23. White PJ, Bowen HC, Marshall B, Broadley MR (2007) Ann Bot 100:111–118

    Article  CAS  Google Scholar 

  24. Pickering IJ, Prince RC, Salt DE, George GN (2000) Proc Natl Acad Sci U S A 97:10717–10722

    Article  CAS  Google Scholar 

  25. Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SC, Marcus MA, McGrath SP, Van Hoewyk D, Pilon-Smits EAH (2010) Plant Physiol 153:1630–1652

    Article  CAS  Google Scholar 

  26. Banuelos GS, Fakra SC, Walse SS, Marcus MA, Yang SI, Pickering IJ, Pilon-Smits EAH, Freeman JL (2011) Plant Physiol 155:315–327

    Article  CAS  Google Scholar 

  27. Webb SM (2011) AIP Conf Proc 1365:196–199

    Article  Google Scholar 

  28. Webb SM (2005) Phys Scr 2005(T115):1011–1014

    Article  Google Scholar 

  29. Mayhew LE, Webb SM, Templeton AS (2011) Environ Sci Technol 45:4468–4474

    Article  CAS  Google Scholar 

  30. de Souza MP, Lytle CM, Mulholland MM, Otte ML, Terry N (2000) Plant Physiol 122:1281–1288

    Article  Google Scholar 

  31. Ryser AL, Marcus MA, Johnson-Maynard JL, Gunter ME, Moller G (2005) Geochem Trans 6:1–11

    Article  CAS  Google Scholar 

  32. Liu Y, Meirer F, Williams PA, Wang J, Andrews JC, Pianetta P (2012) J Synchrotron Radiat 19:281–287

    Article  CAS  Google Scholar 

  33. Pilon-Smits E, Hwang S, Lytle CM, Zhu Y, Tai J, Bravo RC, Chen Y, Leustek T, Terry N (1999) Plant Physiol 119:123–132

    Article  CAS  Google Scholar 

  34. Li HF, McGrath SP, Zhao FJ (2008) New Phytol 178:92–102

    Article  CAS  Google Scholar 

  35. de Souza MP, Chu D (1999) Plant Physiol 119:565–574

    Article  Google Scholar 

  36. Bañuelos GS, Ajwa HA (1997) J Soil Water Conserv 52:426–430

    Google Scholar 

  37. Prasad MN, Freitas HM (2003) Electron J Biotechnol 6:275–321

    Article  Google Scholar 

  38. Whanger PD (2002) J Am Coll Nutr 21:223–232

    CAS  Google Scholar 

  39. Freeman JL, Banuelos GS (2011) Environ Sci Technol 45:9703–9710

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by California State University East Bay (CSUEB), a CSUPERB Faculty Seed Grant, and a Faculty Support Grant to D.L.L and a CSUEB Graduate Research Grant and Fellowship awarded to W.M.A. We especially thank Elizabeth Pilon-Smits of Colorado State University for seeds and Qilin Chan and Joseph Caruso for GC-ICP-MS analysis. We would also like to thank Leanne Thompson, Jennifer Cassano, Gina Anderson, Lisa Xu, Sandra Carrasco-Gil, Cynthia Patty, Florian Meirer, Jie Chen, and Renee N. Easter. Portions of this research were done at the SSRL, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program (P41RR001209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy C. Andrews.

Additional information

Published in the special paper collection Imaging Techniques with Synchrotron Radiation with guest editor Cyril Petibois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amos, W., Webb, S., Liu, Y. et al. Imaging translocation and transformation of bioavailable selenium by Stanleya pinnata with X-ray microscopy. Anal Bioanal Chem 404, 1277–1285 (2012). https://doi.org/10.1007/s00216-012-5881-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5881-2

Keywords

Navigation