Skip to main content
Log in

Analytical methods for determination of new fluoroquinolones in biological matrices and pharmaceutical formulations by liquid chromatography: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2012

Abstract

Fluoroquinolones are one of the most promising and intensively studied drugs of contemporary anti-infective chemotherapy. New fluoroquinolone antibacterials with improved pharmacokinetic properties and a broad spectrum of activity have been developed, opening new windows of opportunity for clinical use. To our knowledge, no comprehensive and critical review of the analytical methods for the determination of these agents, which correspond to the third- and fourth-generation quinolones, has yet been published. This work summarizes for the first time most of the liquid chromatographic methods reported in the literature for the separation and quantification of the new fluoroquinolones in biological matrices and pharmaceutical formulations. A systematic and detailed survey of physicochemical properties, sample preparation procedures, and chromatographic and detection conditions is presented herein. In the course of this review several liquid chromatographic methods are discussed: reversed-phase high-performance liquid chromatography (RP-HPLC), ion-exchange high-performance liquid chromatography (IEX-HPLC), hydrophilic interaction liquid chromatography (HILIC), high-performance thin-layer chromatography (HPTLC) and other chiral chromatographic methods. Their advantages, applicability and limitations are also examined.

Liquid chromatographic methods for determination of new fluoroquinolones in biological matrices and pharmaceutical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Peterson LR (2001) Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity. Clin Infect Dis 33(Suppl 3):S180–S186

    CAS  Google Scholar 

  2. Emmerson AM, Jones AM (2003) The quinolones: decades of development and use. J Antimicrob Chemother 51(Suppl 1):13–20

    CAS  Google Scholar 

  3. Andriole VT (2005) The quinolones: past, present, and future. Clin Infect Dis 41(Suppl 2):S113–S119

    CAS  Google Scholar 

  4. Sharma PC, Jain A, Jain S (2009) Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm 66:587–604

    CAS  Google Scholar 

  5. Sousa J, Alves G, Fortuna A, Pena A, Lino C, Falcão A (2011) Development and validation of a fast isocratic liquid chromatography method for the simultaneous determination of norfloxacin, lomefloxacin and ciprofloxacin in human plasma. Biomed Chromatogr 25:535–541

    CAS  Google Scholar 

  6. Oliphant CM, Green GM (2002) Quinolones: a comprehensive review. Am Fam Physician 65:455–464

    Google Scholar 

  7. Bolon MK (2009) The newer fluoroquinolones. Infect Dis Clin N Am 23:1027–1051

    Google Scholar 

  8. Scheld WM (2003) Maintaining fluoroquinolone class efficacy: review of influencing factors. Emerg Infect Dis 9:1–9

    CAS  Google Scholar 

  9. Carlucci G (1998) Analysis of fluoroquinolones in biological fluids by high-performance liquid chromatography. J Chromatogr A 812:343–367

    CAS  Google Scholar 

  10. Wise R, Jones S, Das I, Andrews JM (1998) Pharmacokinetics and inflammatory fluid penetration of clinafloxacin. Antimicrob Agents Chemother 42:428–430

    CAS  Google Scholar 

  11. Randinitis EJ, Brodfuehrer JI, Eiseman I, Vassos AB (2001) Pharmacokinetics of clinafloxacin after single and multiple doses. Antimicrob Agents Chemother 45:2529–2535

    CAS  Google Scholar 

  12. Nakashima M, Uematsu T, Kosuge K, Kusajima H, Ooie T, Masuda Y, Ishida R, Uchida H (1995) Single- and multiple-dose pharmacokinetics of AM-1155, a new 6-fluoro-8-methoxy quinolone, in humans. Antimicrob Agents Chemother 39(12):2635–2640

    CAS  Google Scholar 

  13. Aminimanizani A, Beringer P, Jelliffe R (2001) Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials. Clin Pharmacokinet 40(3):169–187

    CAS  Google Scholar 

  14. Zhanel GG, Noreddin AM (2001) Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: focus on respiratory infections. Curr Opin Pharmacol 1:459–463

    CAS  Google Scholar 

  15. Yoo BK, Triller DM, Yong CS, Lodise TP (2004) Gemifloxacin: a new fluoroquinolone approved for treatment of respiratory infections. Ann Pharmacother 38:1226–1235

    CAS  Google Scholar 

  16. Efthymiopoulos C (1997) Pharmacokinetics of grepafloxacin. J Antimicrob Chemother 40(Suppl 1):35–43

    CAS  Google Scholar 

  17. Turnidge J (1999) Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs 58(Suppl 2):29–36

    CAS  Google Scholar 

  18. Martin SJ, Meyer JM, Chuck SK, Jung R, Messick CR, Pendland SL (1998) Levofloxacin and sparfloxacin: new quinolone antibiotics. Ann Pharmacother 32:320–336

    CAS  Google Scholar 

  19. Yamaki KI, Hasegawa T, Matsuda I, Nadai M, Aoki H, Takagi K (1997) Pharmacokinetic characteristics of a new fluoroquinolone, pazufloxacin, in elderly patients. J Infect Chemother 3:97–102

    CAS  Google Scholar 

  20. Pazufloxacin mesylate intravenous infusion (2010) PAZFLO leaflet. http://cipladoc.com/therapeutic/pdf_cipla/pazflo.pdf. Accessed 6 Aug 2011

  21. Nakashima M, Uematsu T, Kosuge K, Umemura K, Hakusui H, Tanaka M (1995) Pharmacokinetics and tolerance of DU-6859a, a new fluoroquinolone, after single and multiple oral doses in healthy volunteers. Antimicrob Agents Chemother 39:170–174

    CAS  Google Scholar 

  22. O’Grady J, Briggs A, Atarashi S, Kobayashi H, Smith RL, Ward J, Ward C, Milatovic D (2001) Pharmacokinetics and absolute bioavailability of sitafloxacin, a new fluoroquinolone antibiotic, in healthy male and female Caucasian subjects. Xenobiotica 31:811–822

    Google Scholar 

  23. Ritz M, Lode H, Fassbender M, Borner K, Koeppe P, Nord CE (1994) Multiple-dose pharmacokinetics of sparfloxacin and its influence on fecal flora. Antimicrob Agents Chemother 38:455–459

    CAS  Google Scholar 

  24. Montay G (1996) Pharmacokinetics of sparfloxacin in healthy volunteers and patients: a review. J Antimicrob Chemother 37(Suppl A):27–39

    CAS  Google Scholar 

  25. Granneman GR, Carpentier P, Morrison PJ, Pernet AG (1991) Pharmacokinetics of temafloxacin in humans after single oral doses. Antimicrob Agents Chemother 35:436–441

    CAS  Google Scholar 

  26. Minami R, Nakamura C, Inotsume N, Nakano M (1998) Effects of aluminum hydroxide and famotidine on bioavailability of tosufloxacin in healthy volunteers. Antimicrob Agents Chemother 42:453–455

    CAS  Google Scholar 

  27. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) Oral bioavailability of trovafloxacin with and without food in healthy volunteers. J Antimicrob Chemother 39(Suppl B):87–92

    CAS  Google Scholar 

  28. Vincent J, Venitz J, Teng R, Baris BA, Willavize SA, Polzer RJ, Friedman HL (1997) Pharmacokinetics and safety of trovafloxacin in healthy male volunteers following administration of single intravenous doses of the prodrug, alatrofloxacin. J Antimicrob Chemother 39(Suppl B):75–80

    CAS  Google Scholar 

  29. Vincent J, Teng R, Dalvie DK, Friedman HL (1998) Pharmacokinetics and metabolism of single oral doses of trovafloxacin. Am J Surg 176(Suppl 6A):8S–13S

    CAS  Google Scholar 

  30. Keam SJ, Perry CM (2004) Prulifloxacin. Drugs 64:2221–2234

    CAS  Google Scholar 

  31. Matera MG (2006) Pharmacologic characteristics of prulifloxacin. Pulm Pharmacol Ther 19(Suppl 1):20–29

    CAS  Google Scholar 

  32. Garraffo R, Lavrut T, Durant J, Héripret L, Sérini MA, Dunais B, Dellamonica P (2005) In vivo comparative pharmacokinetics and pharmacodynamics of moxifloxacin and levofloxacin in human neutrophils. Clin Drug Investig 25:643–650

    CAS  Google Scholar 

  33. Blondeau JM (1999) Expanded activity and utility of the new fluoroquinolones: a review. Clin Ther 21:3–40

    CAS  Google Scholar 

  34. Brighty KE, Gootz TD (1997) The chemistry and biological profile of trovafloxacin. J Antimicrob Chemother 39(Suppl B):1–14

    CAS  Google Scholar 

  35. Alghasham AA, Nahata MC (1999) Trovafloxacin: a new fluoroquinolone. Ann Pharmacother 33:48–60

    CAS  Google Scholar 

  36. Blondeau JM (2004) Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv Ophthalmol 49(Suppl 2):S73–S78

    Google Scholar 

  37. Falagas ME, Bliziotis IA, Rafailidis PI (2007) Do high doses of quinolones decrease the emergence of antibacterial resistance? A systematic review of data from comparative clinical trials. J Infect 55:97–105

    Google Scholar 

  38. Ball P (2003) Adverse drug reactions: implications for the development of fluoroquinolones. J Antimicrob Chemother 51(Suppl 1):21–27

    CAS  Google Scholar 

  39. Mehlhorn AJ, Brown DA (2007) Safety concerns with fluoroquinolones. Ann Pharmacother 41:1859–1866

    Google Scholar 

  40. Babić S, Horvat AJM, Pavlović DM, Kaštelan-Macan M (2007) Determination of pK a values of active pharmaceutical ingredients. Trends Analyt Chem 26:1043–1061

    Google Scholar 

  41. Hu J, Wang W, Zhu Z, Chang H, Pan F, Lin B (2007) Quantitative structure-activity relationship model for prediction of genotoxic potential for quinolone antibacterials. Environ Sci Technol 41:4806–4812

    CAS  Google Scholar 

  42. Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24:423–430

    CAS  Google Scholar 

  43. Singh BK, Parwate DV, Shukla SK (2009) Rapid color test identification system for screening of counterfeit fluoroquinolone. E-J Chem 6:377–384

    CAS  Google Scholar 

  44. Hirota M, Totsu T, Adachi F, Kamikawa K, Watanabe J, Kanegasaki S, Nakata K (2001) Comparison of antimycobacterial activity of grepafloxacin against Mycobacterium avium with that of levofloxacin: accumulation of grepafloxacin in human macrophages. J Infect Chemother 7:16–21

    CAS  Google Scholar 

  45. Cárceles CM, Villamayor L, Escudero E, Marín P, Fernández-Varón E (2007) Pharmacokinetics and milk penetration of moxifloxacin after intramuscular administration to lactating goats. Vet J 173:452–455

    Google Scholar 

  46. Phapale PB, Lee HW, Kim SD, Lim MS, Kale DD, Lee JM, Park JH, Moon SO, Yoon YR (2010) Analysis of pazufloxacin mesilate in human plasma and urine by LC with fluorescence and UV detection, and its application to pharmacokinetic study. Chromatographia 71:101–106

    CAS  Google Scholar 

  47. Araki T, Kawai Y, Ohta I, Kitaoka H (2002) Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic, in an aqueous solution. Chem Pharm Bull 50:229–234

    CAS  Google Scholar 

  48. Kamberi M, Kamberi P, Hajime N, Uemura N, Nakamura K, Nakano S (1999) Determination of sparfloxacin in plasma and urine by a simple and rapid liquid chromatographic method. Ther Drug Monit 21:411–415

    CAS  Google Scholar 

  49. Ross DL, Elkinton SK, Riley CM (1992) Physicochemical properties of the fluoroquinolone antimicrobials. III. 1-Octanol/water partition coefficients and their relationships to structure. Int J Pharm 88:379–389

    CAS  Google Scholar 

  50. Belal F, Al-Majed AA, Al-Obaid AM (1999) Methods of analysis of 4-quinolone antibacterials. Talanta 50:765–786

    CAS  Google Scholar 

  51. Takács-Novák K, Jósan M, Hermecz I, Szász (1992) Lipophilicity of antibacterial fluoroquinolones. Int J Pharm 79:89–96

    Google Scholar 

  52. Sun J, Sakai S, Tauchi Y, Deguchi Y, Chen J, Zhang R, Morimoto K (2002) Determination of lipophilicity of two quinolone antibacterials, ciprofloxacin and grepafloxacin, in the protonation equilibrium. Eur J Pharm Biopharm 54:51–58

    CAS  Google Scholar 

  53. Andersson MI, MacGowan AP (2003) Development of the quinolones. J Antimicrob Chemother 51(Suppl 1):1–11

    CAS  Google Scholar 

  54. Kamberi M, Kamberi P, Nakano S (2000) Determination of grepafloxacin in plasma and urine by a simple and rapid high-performance liquid chromatographic method. J Chromatogr B Biomed Sci Appl 741:295–300

    CAS  Google Scholar 

  55. Nguyen HA, Grellet J, Ba BB, Quentin C, Saux MC (2004) Simultaneous determination of levofloxacin, gatifloxacin and moxifloxacin in serum by liquid chromatography with column switching. J Chromatogr B Analyt Technol Biomed Life Sci 810:77–83

    CAS  Google Scholar 

  56. Srinivas N, Narasu L, Shankar BP, Mullangi R (2008) Development and validation of a HPLC method for simultaneous quantitation of gatifloxacin, sparfloxacin and moxifloxacin using levofloxacin as internal standard in human plasma: application to a clinical pharmacokinetic study. Biomed Chromatogr 22:1288–1295

    CAS  Google Scholar 

  57. Roy B, Das A, Bhaumik U, Sarkar AK, Bose A, Mukharjee J, Chakrabarty US, Das AK, Pal TK (2010) Determination of gemifloxacin in different tissues of rat after oral dosing of gemifloxacin mesylate by LC-MS/MS and its application in drug tissue distribution study. J Pharm Biomed Anal 52:216–226

    CAS  Google Scholar 

  58. Gupta H, Aqil M, Khar RK, Ali A, Chander P (2010) A single reversed-phase UPLC method for quantification of levofloxacin in aqueous humour and pharmaceutical dosage forms. J Chromatogr Sci 48:484–490

    CAS  Google Scholar 

  59. Borner K, Borner E, Lode H (1992) Determination of sparfloxacin in serum and urine by high-performance liquid chromatography. J Chromatogr 579:285–289

    CAS  Google Scholar 

  60. Teng R, Tensfeldt TG, Liston TE, Foulds G (1996) Determination of trovafloxacin, a new quinolone antibiotic, in biological samples by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Appl 675:53–59

    CAS  Google Scholar 

  61. Al-Dgither S, Alvi SN, Hammami MM (2006) Development and validation of an HPLC method for the determination of gatifloxacin stability in human plasma. J Pharm Biomed Anal 41:251–255

    CAS  Google Scholar 

  62. Guo L, Qi M, Jin X, Wang P, Zhao H (2006) Determination of the active metabolite of prulifloxacin in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 832:280–285

    CAS  Google Scholar 

  63. Nemutlu E, Kir S, Ozyuncu O, Beksac MS (2007) Simultaneous separation and determination of seven quinolones using HPLC: analysis of levofloxacin and moxifloxacin in plasma and amniotic fluid. Chromatographia 66(Suppl 1):S15–S24

    CAS  Google Scholar 

  64. Pellegrino RM, Segoloni F, Cagini C (2008) Simultaneous determination of ciprofloxacin and the active metabolite of prulifloxacin in aqueous human humor by high-performance liquid chromatography. J Pharm Biomed Anal 47:567–574

    CAS  Google Scholar 

  65. Hemanth Kumar AK, Ramachandran G (2009) Simple and rapid liquid chromatography method for determination of moxifloxacin in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 877:1205–1208

    CAS  Google Scholar 

  66. Koechlin C, Jehl F, Linger L, Monteil (1989) High-performance liquid chromatography for the determination of three new fluoroquinolones, fleroxacin, temafloxacin and A-64730, in biological fluids. J Chromatogr 491:379–387

    CAS  Google Scholar 

  67. Ocaña González JA, Jiménez Palacios FJ, Callejón Mochón M, Barragán de la Rosa FJ (2004) Simultaneous determination of cefepime and grepafloxacin in human urine by high-performance liquid chromatography. J Pharm Biomed Anal 36:117–123

    Google Scholar 

  68. Baietto L, D’Avolio A, De Rosa FG, Garazzino S, Patanella S, Siccardi M, Sciandra M, Di Perri G (2009) Simultaneous quantification of linezolid, rifampicin, levofloxacin, and moxifloxacin in human plasma using high-performance liquid chromatography with UV. Ther Drug Monit 31:104–109

    CAS  Google Scholar 

  69. Wright DH, Herman VK, Konstantinides FN, Rotschafer JC (1998) Determination of quinolone antibiotics in growth media by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 709:97–104

    CAS  Google Scholar 

  70. Liang H, Kays MB, Sowinski KM (2002) Separation of levofloxacin, ciprofloxacin, gatifloxacin, moxifloxacin, trovafloxacin and cinoxacin by high-performance liquid chromatography: application to levofloxacin determination in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 772:53–63

    CAS  Google Scholar 

  71. Overholser BR, Kays MB, Sowinski KM (2003) Determination of gatifloxacin in human serum and urine by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 798:167–173

    CAS  Google Scholar 

  72. US DHHS, FDA and CDER (2001) Guidance for industry: bioanalytical method validation. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research and Center for Veterinary Medicine. http://www/fda.gov/cder/guidance/index.htm. Accessed 10 May 2011

  73. Gupta H, Aqil M, Khar RK, Ali A, Sharma A, Chander P (2010) Development and validation of a stability-indicating RP-HPLC method for the quantitative analysis of sparfloxacin. J Chromatogr Sci 48:1–6

    CAS  Google Scholar 

  74. Engler M, Rüsing G, Sörgel F, Holzgrabe U (1998) Defluorinated sparfloxacin as a new photoproduct identified by liquid chromatography coupled with UV detection and tandem mass spectrometry. Antimicrob Agents Chemother 42:1151–1159

    CAS  Google Scholar 

  75. Lovdahl MJ, Priebe SR (2000) Characterization of clinafloxacin photodegradation products by LC-MS/MS and NMR. J Pharm Biomed Anal 23:521–534

    CAS  Google Scholar 

  76. Yoshida Y, Sato E, Moroi R (1993) Photodegradation products of levofloxacin in aqueous solution. Arzneimittelforschung 43:601–606

    CAS  Google Scholar 

  77. Fasani E, Rampi M, Albini A (1999) Photochemistry of some fluoroquinolones: effect of pH and chloride ion. J Chem Soc, Perkin Trans 2:1901–1907

    Google Scholar 

  78. Albini A, Monti S (2003) Photophysics and photochemistry of fluoroquinolones. Chem Soc Rev 32:238–250

    CAS  Google Scholar 

  79. Eurachem (1998) The fitness for purpose of analytical methods: a laboratory guide to method validationand related topics. LGC, Teddington. http://www.eurachem.org/guides/pdf/valid.pdf. Accessed 23 May 2011

  80. Nováková L, Vlcková H (2009) A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta 656:8–35

    Google Scholar 

  81. Unceta N, Goicolea MA, Barrio RJ (2011) Analytical procedures for the determination of the selective serotonin reuptake inhibitor antidepressant citalopram and its metabolites. Biomed Chromatogr 25:238–257

    CAS  Google Scholar 

  82. Kole PL, Venkatesh G, Kotecha J, Sheshala R (2011) Recent advances in sample preparation techniques for effective bioanalytical methods. Biomed Chromatogr 25:199–217

    CAS  Google Scholar 

  83. Roy B, Choudhury H, Das A, Das AK, Pal TK (2011) Development and validation of a liquid chromatography-tandem mass spectrometry method to determine ulifloxacin, the active metabolite of prulifloxacin in rat and rabbit plasma: application to toxicokinetic study. Biomed Chromatogr 25:890–901

    CAS  Google Scholar 

  84. Fang PF, Cai HL, Li HD, Zhu RH, Tan QY, Gao W, Xu P, Liu YP, Zhang WY, Chen YC, Zhang F (2010) Simultaneous determination of isoniazid, rifampicin, levofloxacin in mouse tissues and plasma by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:2286–2291

    CAS  Google Scholar 

  85. Jain GK, Jain N, Pathan SA, Akhter S, Talegaonkar S, Chander P, Khar RK, Ahmad FJ (2010) Ultra high-pressure liquid chromatographic assay of moxifloxacin in rabbit aqueous humor after topical instillation of moxifloxacin nanoparticles. J Pharm Biomed Anal 52:110–113

    CAS  Google Scholar 

  86. Noh K, Kwon KI, Jeong TC, Kang W (2010) Quantitative determination of sparfloxacin in rat plasma by liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 24:1199–1202

    CAS  Google Scholar 

  87. Watabe S, Yokoyama Y, Nakazawa K, Shinozaki K, Hiraoka R, Takeshita K, Suzuki Y (2010) Simultaneous measurement of pazufloxacin, ciprofloxacin, and levofloxacin in human serum by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 878:1555–1561

    CAS  Google Scholar 

  88. De Smet J, Boussery K, Colpaert K, De Sutter P, De Paepe P, Decruyenaere J, Van Bocxlaer J (2009) Pharmacokinetics of fluoroquinolones in critical care patients: a bio-analytical HPLC method for the simultaneous quantification of ofloxacin, ciprofloxacin and moxifloxacin in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 877:961–967

    Google Scholar 

  89. Rambla-Alegre M, Esteve-Romero J, Carda-Broch S (2009) Validation of a MLC method with fluorescence detection for the determination of quinolones in urine samples by direct injection. J Chromatogr B Analyt Technol Biomed Life Sci 877:3975–3981

    CAS  Google Scholar 

  90. Rote AR, Pingle SP (2009) Reverse phase-HPLC and HPTLC methods for determination of gemifloxacin mesylate in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 877:3719–3723

    CAS  Google Scholar 

  91. Robledo VR, Smyth WF (2008) A study of the analytical behaviour of selected new molecular entities using electrospray ionisation ion trap mass spectrometry, liquid chromatography, gas chromatography and polarography and their determination in serum at therapeutic concentrations. Anal Chim Acta 623:221–230

    Google Scholar 

  92. Gao X, Yao G, Guo N, An F, Guo X (2007) A simple and rapid high performance liquid chromatography method to determine levofloxacin in human plasma and its use in a bioequivalence study. Drug Discov Ther 1:136–140

    Google Scholar 

  93. Pea F, Marioni G, Pavan F, Staffieri C, Bottin R, Staffieri A, Furlanut M (2007) Penetration of levofloxacin into paranasal sinuses mucosa of patients with chronic rhinosinusitis after a single 500 mg oral dose. Pharmacol Res 55:38–41

    CAS  Google Scholar 

  94. Tasso L, Dalla Costa T (2007) High performance liquid chromatography for quantification of gatifloxacin in rat plasma following automated on-line solid phase extraction. J Pharm Biomed Anal 44:205–210

    CAS  Google Scholar 

  95. Tatar Ulu S (2007) High-performance liquid chromatography assay for moxifloxacin: pharmacokinetics in human plasma. J Pharm Biomed Anal 43:320–340

    CAS  Google Scholar 

  96. Wen J, Zhu Z, Hong Z, Wu Y, Fei Y, Lin M, Fan G, Wu Y (2007) Determination of the active metabolite of prulifloxacin in human plasma by HPLC with fluorescence detection. Chromatographia 66:37–41

    CAS  Google Scholar 

  97. Zhou ZL, Yang M, Yu XY, Peng HY, Shan ZX, Chen SZ, Lin QX, Liu XY, Chen TF, Zhou SF, Lin SG (2007) A rapid and simple high-performance liquid chromatography method for the determination of human plasma levofloxacin concentration and its application to bioequivalence studies. Biomed Chromatogr 21:1045–1051

    CAS  Google Scholar 

  98. Ji HY, Jeong DW, Kim YH, Kim HH, Sohn DR, Lee HS (2006) Hydrophilic interaction liquid chromatography-tandem mass spectrometry for the determination of levofloxacin in human plasma. J Pharm Biomed Anal 41:622–627

    CAS  Google Scholar 

  99. Laban-Djurdjević A, Jelikić-Stankov M, Djurdjević P (2006) Optimization and validation of the direct HPLC method for the determination of moxifloxacin in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 844:104–111

    Google Scholar 

  100. Salazar Cavazos ML, Colunga González LY, Gallegos de Lerma G, Waksman de Torres N (2006) Determination of gatifloxacin in semen by HPLC with diode-array and fluorescence detection. Chromatographia 63:605–608

    Google Scholar 

  101. Schulte S, Ackermann T, Bertram N, Sauerbruch T, Paar WD (2006) Determination of the newer quinolones levofloxacin and moxifloxacin in plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr Sci 44:205–208

    CAS  Google Scholar 

  102. Siewert S (2006) Validation of a levofloxacin HPLC assay in plasma and dialysate for pharmacokinetic studies. Pharm Biomed Anal 41:1360–1362

    CAS  Google Scholar 

  103. Ocaña González JA, Callejón Mochón M, Barragán de la Rosa FJ (2005) Simultaneous determination of cefepime and the quinolones garenoxacin, moxifloxacin and levofloxacin in human urine by HPLC-UV. Microchim Acta 151:39–45

    Google Scholar 

  104. Djabarouti S, Boselli E, Allaouchiche B, Ba B, Nguyen AT, Gordien JB, Bernadou JM, Saux MC, Breilh D (2004) Determination of levofloxacin in plasma, bronchoalveolar lavage and bone tissues by high-performance liquid chromatography with ultraviolet detection using a fully automated extraction method. J Chromatogr B Analyt Technol Biomed Life Sci 799:165–172

    CAS  Google Scholar 

  105. Pea F, Di Qual E, Cusenza A, Brollo L, Baldassarre M, Furlanut M (2003) Pharmacokinetics and pharmacodynamics of intravenous levofloxacin in patients with early-onset ventilator-associated pneumonia. Clin Pharmacokinet 42:589–598

    CAS  Google Scholar 

  106. Gehanno P, Darantière S, Dubreuil C, Chobaut JC, Bobin S, Pages JC, Renou G, Bobin F, Arvis P, Stass H (2002) A prospective, multicentre study of moxifloxacin concentrations in the sinus mucosa tissue of patients undergoing elective surgery of the sinus. J Antimicrob Chemother 49:821–826

    CAS  Google Scholar 

  107. Neckel U, Joukhadar C, Frossard M, Jäger W, Müller M, Mayer BX (2002) Simultaneous determination of levofloxacin and ciprofloxacin in microdialysates and plasma by high-performance liquid chromatography. Anal Chim Acta 463:199–206

    CAS  Google Scholar 

  108. Böttcher S, von Baum H, Hoppe-Tichy T, Benz C, Sonntag HG (2001) An HPLC assay and a microbiological assay to determine levofloxacin in soft tissue, bone, bile and serum. J Pharm Biomed Anal 25:197–203

    Google Scholar 

  109. Du LM, Fan ZF, Qiao JL, Wang JP (2001) Determination of sparfloxacin in human urine by reversed-phase high performance liquid chromatography with nitrous acid and hydroiodic pre-column derivatization. Chin Chem Lett 12:1007–1010

    CAS  Google Scholar 

  110. Vishwanathan K, Bartlett MG, Stewart JT (2001) Determination of gatifloxacin in human plasma by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 15:915–919

    CAS  Google Scholar 

  111. Borner K, Hartwig H, Lode H (2000) Determination of gatifloxacin in human serum and urine by HPLC. Chromatographia 52(Suppl 1):S105–S107

    CAS  Google Scholar 

  112. Doyle E, Fowles SE, McDonnell DF, McCarthy R, White SA (2000) Rapid determination of gemifloxacin in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 746:191–198

    CAS  Google Scholar 

  113. Lemoine T, Breilh D, Ducint D, Dubrez J, Jougon J, Velly JF, Saux MC (2000) Determination of moxifloxacin (BAY 12-8039) in plasma and lung tissue by high-performance liquid chromatography with ultraviolet detection using a fully automated extraction method with a new polymeric cartridge. J Chromatogr B Biomed Sci Appl 742:247–254

    CAS  Google Scholar 

  114. Perez-Olivan S, Solans C, García MA, Pinilla I, Honrubia F, Bregante MA (2000) Determination of grepafloxacin in plasma samples by HPLC: application to clinical pharmacokinetic studies. Chromatographia 51:25–28

    CAS  Google Scholar 

  115. Borner K, Hartwig H, Lode H (1999) Determination of trovafloxacin in human body fluids by high-performance liquid chromatography. J Chromatogr A 846:175–180

    CAS  Google Scholar 

  116. Kamberi M, Hajime N, Kamberi P, Uemura N, Nakamura K, Nakano S (1999) Simultaneous determination of grepafloxacin, ciprofloxacin, and theophylline in human plasma and urine by HPLC. Ther Drug Monit 21:335–340

    CAS  Google Scholar 

  117. Brodfuehrer JI, Priebe S, Guttendorf R (1998) Achiral and chiral high-performance liquid chromatographic methods for clinafloxacin, a fluoroquinolone antibacterial, in human plasma. J Chromatogr B Biomed Sci Appl 709:265–272

    CAS  Google Scholar 

  118. Mody VD, Pandya KK, Satia MC, Modi IA, Modi RI, Gandhi TP (1998) High performance thin-layer chromatographic method for the determination of sparfloxacin in human plasma and its use in pharmacokinetic studies. J Pharm Biomed Anal 16:1289–1294

    CAS  Google Scholar 

  119. Stass H, Dalhoff A (1997) Determination of BAY 12-8039, a new 8-methoxyquinolone, in human body fluids by high-performance liquid chromatography with fluorescence detection using on-column focusing. J Chromatogr B Biomed Sci Appl 702:163–174

    CAS  Google Scholar 

  120. Wong FA, Juzwin SJ, Flor SC (1997) Rapid stereospecific high-performance liquid chromatographic determination of levofloxacin in human plasma and urine. J Pharm Biomed Anal 15:765–771

    CAS  Google Scholar 

  121. Matsuoka M, Banno K, Sato T (1996) Analytical chiral separation of a new quinolone compound in biological fluids by high-performance liquid chromatography. J Chromatogr B Biomed Appl 676:117–124

    CAS  Google Scholar 

  122. Aoki H, Ohshima Y, Tanaka M, Okazaki O, Hakusui H (1994) High-performance liquid chromatographic determination of the new quinolone antibacterial agent DU-6859a in human serum and urine using solid-phase extraction with photolysis-fluorescence detection. J Chromatogr B Biomed Appl 660:365–374

    CAS  Google Scholar 

  123. Granneman GR, Varga LL (1991) High-performance liquid chromatographic procedures for the determination of temafloxacin in biological matrices. J Chromatogr 568:197–206

    CAS  Google Scholar 

  124. Bao D, Truong TT, Renick PJ, Pulse ME, Weiss WJ (2008) Simultaneous determination of rifampicin and levofloxacin concentrations in catheter segments from a mouse model of a device-related infection by liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 46:723–727

    CAS  Google Scholar 

  125. Hendriks G (2009) Theoretical models in LC based bioanalytical method development. J Pharm Biomed Anal 49:1–10

    CAS  Google Scholar 

  126. Morales-Cid G, Cárdenas S, Simonet BM, Valcárcel M (2009) Fully automatic sample treatment by integration of microextraction by packed sorbents into commercial capillary electrophoresis-mass spectrometry equipment: application to the determination of fluoroquinolones in urine. Anal Chem 81:3188–3193

    CAS  Google Scholar 

  127. Burden DW (2008) Guide to the homogenization of biological samples. Random Primers 7:1–14

    Google Scholar 

  128. Marona HR, Schapoval EE (1999) A high-performance liquid chromatographic assay for sparfloxacin. J Pharm Biomed Anal 20:413–417

    CAS  Google Scholar 

  129. Santoro MI, Kassab NM, Singh AK, Kedor-Hackmam ER (2006) Quantitative determination of gatifloxacin, levofloxacin, lomefloxacin and pefloxacin fluoroquinolonic antibiotics in pharmaceutical preparations by high-performance liquid chromatography. J Pharm Biomed Anal 40:179–784

    CAS  Google Scholar 

  130. Kothekar KM, Jayakar B, Khandhar AP, Mishra RK (2007) Quantitative determination of levofloxacin and ambroxol hydrochloride in pharmaceutical dosage form by reversed- phase high performance liquid chromatography. Eurasian J Anal Chem 2:21–31

    Google Scholar 

  131. Patel SA, Prajapati AM, Patel PU, Patel NJ, Vaghmasi JB (2008) Development and validation of column high-performance liquid chromatographic and derivative spectrophotometric methods for determination of levofloxacin and ornidazole in combined dosage forms. J AOAC Int 91:756–761

    CAS  Google Scholar 

  132. Donnenfeld ED, Comstock TL, Proksch JW (2011) Human aqueous humor concentrations of besifloxacin, moxifloxacin, and gatifloxacin after topical ocular application. J Cataract Refract Surg 37:1082–1089

    Google Scholar 

  133. Nageswara Rao R, Naidu CG, Prasad KG, Narasimha R (2011) Development and validation of a RP-HPLC method for stability-indicating assay of gemifloxacin mesylate including identification of related substances by LC-ESI-MS/MS, 1H and 13C NMR spectroscopy. Biomed Chromatogr. doi:10.1002/bmc.1594

  134. Yan H, Row KH (2007) Rapid chiral separation and impurity determination of levofloxacin by ligand-exchange chromatography. Anal Chim Acta 584:160–165

    CAS  Google Scholar 

  135. Chen B, Yu Z, Zhang W, Fang J, Cai W (2006) Determination of pazufloxacin in human plasma by RP-HPLC with fluorimetric detection. Chin J Hosp Pharm 9:1104–1106

    Google Scholar 

  136. Sultana N, Arayne MS, Naz A (2006) Development and validation of an HPLC-UV method for the determination of gatifloxacin in bulk material, pharmaceutical formulations, human plasma and metal complexes. Pak J Pharm Sci 19:275–281

    CAS  Google Scholar 

  137. Zhang Z, Yang G, Wang D, Liang G, Chen Y (2004) Chiral separation and enantiomeric purity determination of pazufloxacin mesylate by HPLC using chiral mobile phase additives. J Liq Chromatogr Relat Technol 27(5):813–827

    CAS  Google Scholar 

  138. Lyon DJ, Cheung SW, Chan CY, Cheng AF (1994) Rapid HPLC assay of clinafloxacin, fleroxacin, levofloxacin, sparfloxacin and tosufloxacin. J Antimicrob Chemother 34:446–448

    CAS  Google Scholar 

  139. Kim BH, Choi NH, Ok JH (2002) Comparison of reversed-phase liquid chromatographic methods for the separation of new quinolones. J Chromatogr Sci 40:369–376

    CAS  Google Scholar 

  140. Nawrocki J (1997) The silanol group and its role in liquid chromatography. J Chromatogr A 779:29–71

    CAS  Google Scholar 

  141. Sudo Y (1996) End-capping of octadecylsilylated silica gels by high-temperature silylation. J Chromatogr A 737:139–147

    CAS  Google Scholar 

  142. Chamseddin C, Jira TH (2011) Comparison of the chromatographic behavior of levofloxacin, ciprofloxacin, ciprofloxacin and moxifloxacin on various HPLC phases. Pharmazie 66:244–248

    CAS  Google Scholar 

  143. Pistos C, Stewart JT (2003) Direct injection HPLC method for the determination of selected benzodiazepines in plasma using a Hisep column. J Pharm Biomed Ana 33:1135–1142

    CAS  Google Scholar 

  144. Grellet J, Ba B, Saux MC (2002) High-performance liquid chromatographic separation of fluoroquinolone enantiomers: a review. J Biochem Biophys Methods 54:221–233

    CAS  Google Scholar 

  145. Alves G, Fortuna A, Falcão A (2008) High-performance liquid chromatography and its impact in the development of chiral drugs: a review. Trends Chromatogr 4:1–10

    CAS  Google Scholar 

  146. Lehr KH, Damn P (1988) Quantification of the enantiomers of ofloxacin in biological fluids by high-performance liquid chromatography. J Chromatogr 425:153–161

    CAS  Google Scholar 

  147. Machida M, Izawa S, Hori W, Ishida R, Uchida H (1999) Pharmacokinetics of gatifloxacin, a new quinolone, and its enantiomers: II. Enantioselective method for the determination of gatifloxacin and its application to pharmacokinetic studies in animals. Jpn J Chemother 47(Suppl 2):124–130

    CAS  Google Scholar 

  148. Liu XB, An S, Man F, Liang BM (2010) Separation of ulifloxacin enantiomers by HPLC with chiral mobile phase additives. Chin J Pharm Anal 3:435–437

    Google Scholar 

  149. Choi HJ, Cho HS, Han SC, Hyun MH (2009) HPLC of fluoroquinolone antibacterials using chiral stationary phase based on enantiomeric (3,3′-diphenyl-1,1′-binaphthyl)-20-crown-6. J Sep Sci 32:536–541

    CAS  Google Scholar 

  150. Lee W, Hong CY (2000) Direct liquid chromatographic enantiomer separation of new fluoroquinolones including gemifloxacin. J Chromatogr A 879:113–120

    CAS  Google Scholar 

  151. Hyun MH, Han SC, Cho YJ, Jin JS, Lee W (2002) Liquid chromatographic resolution of gemifloxacin mesylate on a chiral stationary phase derived from crown ether. Biomed Chromatogr 16:356–360

    CAS  Google Scholar 

  152. Hyun MH, Han SC, Jin JS, Lee W (2000) Separation of the stereoisomers of racemic fluoroquinolone antibacterial agents on a crown-ether-based chiral HPLC stationary phase. Chromatographia 52:473–476

    CAS  Google Scholar 

  153. Sun X, Wu D, Shao B, Zhang J (2009) High-performance liquid-chromatographic separation of ofloxacin using a chiral stationary phase. Anal Sci 25:931–933

    CAS  Google Scholar 

  154. Tanaka M, Oshima Y, Tsuruta H (1998) Novel quartz flow-cell as a post-column photochemical reactor for high-performance liquid chromatography. J Chromatogr A 800:377–381

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia through the grant SFRH/BD/69378/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amílcar Falcão.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-012-5913-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, J., Alves, G., Fortuna, A. et al. Analytical methods for determination of new fluoroquinolones in biological matrices and pharmaceutical formulations by liquid chromatography: a review. Anal Bioanal Chem 403, 93–129 (2012). https://doi.org/10.1007/s00216-011-5706-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5706-8

Keywords

Navigation