Analytical and Bioanalytical Chemistry

, Volume 402, Issue 10, pp 3287–3298 | Cite as

Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology

  • Erica DonnerEmail author
  • Tracy PunshonEmail author
  • Mary Lou Guerinot
  • Enzo Lombi


Functional characterisation of the genes regulating metal(loid) homeostasis in plants is a major focus for phytoremediation, crop biofortification and food security research. Recent advances in X-ray focussing optics and fluorescence detection have greatly improved the potential to use synchrotron techniques in plant science research. With use of methods such as micro X-ray fluorescence mapping, micro computed tomography and micro X-ray absorption near edge spectroscopy, metal(loids) can be imaged in vivo in hydrated plant tissues at submicron resolution, and laterally resolved metal(loid) speciation can also be determined under physiologically relevant conditions. This article focuses on the benefits of combining molecular biology and synchrotron-based techniques. By using molecular techniques to probe the location of gene expression and protein production in combination with laterally resolved synchrotron techniques, one can effectively and efficiently assign functional information to specific genes. A review of the state of the art in this field is presented, together with examples as to how synchrotron-based methods can be combined with molecular techniques to facilitate functional characterisation of genes in planta. The article concludes with a summary of the technical challenges still remaining for synchrotron-based hard X-ray plant science research, particularly those relating to subcellular level research.


Elemental distribution in Arabidopsis seeds collected by synchrotron micro-XRF


X-ray fluorescence Tomography Speciation Functional genomics Plants Metals 



This work was supported by grants from the National Institute of Environmental Health Sciences, Superfund Research Program (grant nos. P42 ES007373-17, NIEHS P20ES01817-02 and EPA RD-83459901-1) to T.P. and M.L.G. and also from the Department of Energy Office of Basic Energy Sciences (grant no. DE-FG02-06ER15809) to M.L.G. A portion of this was work conducted at beamline 2-ID-D at the Advanced Photon Source. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. A portion of this work was performed at beamline X26A, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. X26A is supported by the Department of Energy (DOE)—Geosciences (DE-FG02-92ER14244 to the University of Chicago—CARS) and DOE Office of Biological and Environmental Research, Environmental Remediation Sciences Division (DE-FC09-96-SR18546 to the University of Kentucky). Use of the NSLS was supported by the DOE under contract no. DEAC02-98CH10886. Part of this work was undertaken on the X-ray fluorescence microprobe (XFM) beamline at the Australian Synchrotron, Victoria, Australia.


  1. 1.
    Clemens S (2001) Planta 212:475–486CrossRefGoogle Scholar
  2. 2.
    Zhu C, Naqvi S, Gomez-Galera S, Pekacho AM, Capell T, Christou P (2007) Trends Plant Sci 12:548–555CrossRefGoogle Scholar
  3. 3.
    Mayer JE, Pfeiffer WH, Beyer P (2008) Curr Opin Plant Biol 11:166–170CrossRefGoogle Scholar
  4. 4.
    Chaney R, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Curr Opin Biotechnol 8:279–284CrossRefGoogle Scholar
  5. 5.
    McGrath SP, Zhao FJ, Lombi E (2002) Adv Agron 75:1–56CrossRefGoogle Scholar
  6. 6.
    Pilon-Smits E (2005) Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  7. 7.
    Verbruggen N, Hermans C, Schat H (2009) New Phytol 181:759–776CrossRefGoogle Scholar
  8. 8.
    Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Plant Physiol 128:1359–1367CrossRefGoogle Scholar
  9. 9.
    Assuncao AGL, Schat H, Aarts GM (2003) New Phytol 159:351–360CrossRefGoogle Scholar
  10. 10.
    Lombi E, de Jonge MD, Donner E, Ryan CG, Paterson D (2011) Anal Bioanal Chem 400:1637–1644CrossRefGoogle Scholar
  11. 11.
    Lombi E, Scheckel KG, Kempson IM (2011) Environ Exp Bot 72:3–17CrossRefGoogle Scholar
  12. 12.
    Meharg AA, Macnair MR (1992) J Exp Bot 43:519–524CrossRefGoogle Scholar
  13. 13.
    Geng CN, Zhu YP, Tong YP, Christie P (2005) J Plant Nutr 28:1323–1326CrossRefGoogle Scholar
  14. 14.
    Geng CN, Zhu YG, Liu WJ, Smith SE (2005) Aquat Bot 83:321–331CrossRefGoogle Scholar
  15. 15.
    Meharg AA, Naylor J, Macnair MR (1994) J Environ Qual 23:234–238CrossRefGoogle Scholar
  16. 16.
    Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Plant Physiol 157:498–508CrossRefGoogle Scholar
  17. 17.
    Becker R, Fritz E, Manteuffel R (1995) Plant Physiol 108:269–275Google Scholar
  18. 18.
    Pich A, Scholz G (1996) J Exp Bot 47:41–47CrossRefGoogle Scholar
  19. 19.
    Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Plant Physiol 135:112–120CrossRefGoogle Scholar
  20. 20.
    Pantopoulos K, Hentze MW (1995) EMBO J 14:2917–2924Google Scholar
  21. 21.
    Shulaev V, Oliver DJ (2006) Plant Physiol 141:367–372CrossRefGoogle Scholar
  22. 22.
    Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  23. 23.
    Chalfie M, Kain SR (2006) Green fluorescent protein: properties, applications, and protocols, 2nd edn. Methods of biochemical analysis, vol 47. Wiley, HobokenGoogle Scholar
  24. 24.
    Zhang S, Ma C, Chalfie M (2004) Cell 119:137–144CrossRefGoogle Scholar
  25. 25.
    Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J 6:3901–3907Google Scholar
  26. 26.
    Millar AH, Carrie C, Pogson B, Whelan J (2009) Plant Cell 21:1625–1631CrossRefGoogle Scholar
  27. 27.
    Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Science 312:217–223CrossRefGoogle Scholar
  28. 28.
    Geldner N, Dénerrvaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Plant J 159:167–178Google Scholar
  29. 29.
    Eide D, Broderius M, Fett J, Guerinot ML (1996) Proc Natl Acad Sci USA 93:5624–5628CrossRefGoogle Scholar
  30. 30.
    Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) Plant Mol Biol 40:37–44CrossRefGoogle Scholar
  31. 31.
    Vért G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) Plant Cell 14:1223–1233CrossRefGoogle Scholar
  32. 32.
    Kim SA, Punshon T, Lanzirotti A, Liangtao L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Science 314:1295–1298CrossRefGoogle Scholar
  33. 33.
    Yoo SD, Cho YH, Sheen J (2007) Nat Protoc 2:1565–1572CrossRefGoogle Scholar
  34. 34.
    Miller EW, Zeng L, Domaille DW, Chang CJ (2006) Nat Protoc 1:824–827CrossRefGoogle Scholar
  35. 35.
    Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS (2007) New Phytol 174:39–45CrossRefGoogle Scholar
  36. 36.
    Sarret G (2006) Plant Physiol 141:1021–1034CrossRefGoogle Scholar
  37. 37.
    Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) J Biol Chem 283:8374–8383CrossRefGoogle Scholar
  38. 38.
    Shingles R, Wimmers LE, McCarty RE (2004) Plant Physiol 135:145–151CrossRefGoogle Scholar
  39. 39.
    Dodani SC, Leary SC, Cobine PA, Winge DR, Change CJ (2011) J Am Chem Soc 133:8606–8616CrossRefGoogle Scholar
  40. 40.
    Prom-u-thai C, Dell B, Thompson G, Rerkasem B (2003) Sci Asia 29:203–207CrossRefGoogle Scholar
  41. 41.
    Roschzttardtz H, Conejero G, Curie C, Mari S (2009) Plant Physiol 151:1329–1338CrossRefGoogle Scholar
  42. 42.
    Roschzttardtz H, Conéjéro G, Curie C, Mari S (2010) Plant Signal Behav 5:56–57CrossRefGoogle Scholar
  43. 43.
    Punshon T, Guerinot ML, Lanzirotti A (2009) Ann Bot 103:665–672CrossRefGoogle Scholar
  44. 44.
    Hignette O, Cloetens P, Rostaing G, Bernard P, Morawe C (2005) Rev Sci Instrum 76:063709CrossRefGoogle Scholar
  45. 45.
    Scheckel KG, Lombi E, Rock SA, McLaughlin MJ (2004) Environ Sci Technol 38:5095–5100CrossRefGoogle Scholar
  46. 46.
    Lombi E, Susini J (2009) Plant Soil 320:1–35CrossRefGoogle Scholar
  47. 47.
    Lombi E, Scheckel KG, Pallon J, Carey AM, Zhu YG, Meharg AA (2009) New Phytol 184:193–201CrossRefGoogle Scholar
  48. 48.
    Silversmit G, Vekemans B, Nikitenko S, Schmitz S, Schoonjans T, Brenker FE, Vincze L (2010) Phys Chem Chem Phys 12:5653–5659CrossRefGoogle Scholar
  49. 49.
    Mihucz VG, Silversmit G, Szalóki I, De Samber B, Schoonjans T, Tatára E, Vincze L, Virág I, Yao J, Záray G (2010) Food Chem 121:290–297CrossRefGoogle Scholar
  50. 50.
    Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Plant Physiol 152:309–319CrossRefGoogle Scholar
  51. 51.
    Tappero R, Peltier E, Grafe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) New Phytol 175:641–654CrossRefGoogle Scholar
  52. 52.
    Blute NK, Brabander DJ, Hemond HF, Sutton SR, Newville MG, Rivers ML (2004) Environ Sci Technol 38:6074–6077CrossRefGoogle Scholar
  53. 53.
    Pickering IJ, Prince RC, Salt DE, George GN (2000) Proc Natl Acad Sci USA 97:10717–10722CrossRefGoogle Scholar
  54. 54.
    Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Plant Phys 122:1171–1177CrossRefGoogle Scholar
  55. 55.
    Smith PG, Koch I, Reimer KJ (2008) Sci Total Environ 390:188–197CrossRefGoogle Scholar
  56. 56.
    Parsons JG, Aldrich MV, Gardea-Torresdey JL (2002) Appl Spectrosc Rev 37:187–222CrossRefGoogle Scholar
  57. 57.
    Koningsberger DC, Prins R (1998) X-ray absorption. Wiley, New YorkGoogle Scholar
  58. 58.
    Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Spectrochim Acta Part B At Spectrosc 61:1242–1252CrossRefGoogle Scholar
  59. 59.
    Yun W, Pratt ST, Miller M, Cai Z, Hunter DB, Jarstfer AG, Kemner KM, Lai B, Lee HR, Legnini DG, Rodrigues W, Smith CI (1998) J Synchrotron Radiat 5:1390–1395CrossRefGoogle Scholar
  60. 60.
    Hokura A, Onuma R, Kitajima N, Terada Y, Saito H, Abe T, Yoshida S, Nakai I (2009) Chem Lett 35:1246–1247CrossRefGoogle Scholar
  61. 61.
    Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Environ Sci Technol 40:5010–5014CrossRefGoogle Scholar
  62. 62.
    Bulska E, Wysocka IA, Wierzbicka MH, Proost K, Janssens K, Falkenberg G (2006) Anal Chem 78:7616–7624CrossRefGoogle Scholar
  63. 63.
    Scheckel KG, Hamon R, Jassogne L, Rivers M, Lombi E (2007) Plant Soil 290:51–60CrossRefGoogle Scholar
  64. 64.
    Kirkham R, Duynn PA, Kucziewski A, Siddons DP, Dodanwela R, Moorhead G, Ryan CG, De Geronimo G, Beuttenmuller R, Pinelli D, Pfeffer M, Davey P, Jensen M, Paterson D, de Jonge MD, Kusel M, McKinlay J (2010) AIP Conf Ser 1234:240CrossRefGoogle Scholar
  65. 65.
    Lombi E, de Jonge MD, Donner E, Kopittke PM, Howard DL et al (2011) PLoS One 6(6):e20626CrossRefGoogle Scholar
  66. 66.
    Kopittke PM, Menzies NW, de Jonge MD, McKenna BA, Donner E, Webb RI, Paterson DJ, Howard DL, Ryan CG, Glover CJ, Scheckel KG, Lombi E (2011) Plant Physiol 156:663–673CrossRefGoogle Scholar
  67. 67.
    Chu H-H, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt D, Walker EL (2010) Plant Physiol 154:197–210CrossRefGoogle Scholar
  68. 68.
    Johnson AT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) PLoS One 6:e24476CrossRefGoogle Scholar
  69. 69.
    Punshon T, Hirschi KD, Lanzirotti A, Lai B, Guerinot ML (2012) Plant Physiol (in press)Google Scholar
  70. 70.
    Pittman JK (2005) New Phytol 167:733–742CrossRefGoogle Scholar
  71. 71.
    Lanquar V, Schnell Ramos M, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U, Thomine S (2010) Plant Physiol 152:1986–1999CrossRefGoogle Scholar
  72. 72.
    Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Gercia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh R, Singh S, Swing V, Tissier C, Zhang P, Huala E (2008) Nucleic Acids Res 36:D1009–D1014CrossRefGoogle Scholar
  73. 73.
    Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmerman, Genevestigator P (2008) Adv Bioinform 420747Google Scholar
  74. 74.
    Ryan CG, Kirkham R, Hough RM, Moorhead G, Siddons DP, de Jonge MD, Paterson DJ, De Geronimo G, Howard Dl, Cleverley JS (2010) Nucl Instrum Method Phys Res A 619:37–43CrossRefGoogle Scholar
  75. 75.
    Ryan CG, Siddons DP, Moorhead G, Kirkham R, De Geronimo G, Etschman BE, Dragone A, Dunn PA, Kuczewski A, Davey P, Jensen M, Ablett JM, Kuczewski J, Hough R, Paterson D (2009) In: 9th international conference on X-ray microscopy. IOP Publishing, BristolGoogle Scholar
  76. 76.
    Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Plant Phys 109:1427–1433Google Scholar
  77. 77.
    Polette LA, Gardea-Torresdey JL, Chianelli RR, George GN, Pickering IJ, Arenas J (1998) Microchem J 65:227–236CrossRefGoogle Scholar
  78. 78.
    Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Environ Sci Technol 33:713–717CrossRefGoogle Scholar
  79. 79.
    Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Plant Phys 122:1343–1353CrossRefGoogle Scholar
  80. 80.
    Hale KL, McGrath SP, Lombi E, Stack SM, Terry N, Pickering IJ, George GN, Pilon-Smits EAH (2001) Plant Phys 126:1391–1402CrossRefGoogle Scholar
  81. 81.
    Howe JA, Loeppert RH, Derose VJ, Hunter DB, Bertsch PM (2003) Environ Sci Technol 37:4091–4097CrossRefGoogle Scholar
  82. 82.
    Webb SM, Gaillard JF, Ma LQ, Tu C (2003) Environ Sci Technol 37:754–760CrossRefGoogle Scholar
  83. 83.
    Fuhrman M, Lanzirotti A (2005) J Environ Radioact 82:33–50CrossRefGoogle Scholar
  84. 84.
    Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Plant Physiol 142:124–134CrossRefGoogle Scholar
  85. 85.
    Hokura A, Omuma R, Terada Y, Kitajima N, Abe T, Saito H, Yoshida S, Nakai I (2006) J Anal At Spectrom 21:321–328CrossRefGoogle Scholar
  86. 86.
    Ionescu M, Bhatia NP, Cohen DD, Kachenko A, Siegele R, Marcus MA, Fakra S, Foran G (2008) X-Ray Spectrom 37:629–634CrossRefGoogle Scholar
  87. 87.
    Montarges-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Phytochemistry 69:1695–1709CrossRefGoogle Scholar
  88. 88.
    Marmiroli M, Visioli G, Antonioli G, Maestri E, Marmiroli N (2009) Biochimie 91:180–191CrossRefGoogle Scholar
  89. 89.
    Takahashi M, Nozoye T, Kitajima N, Fukuda N, Hokura A, Terada Y, Nakai I, Ishimaru Y, Kobayashi T, Nakanishi H, Nishizawa NK (2009) Plant Soil 325:39–51CrossRefGoogle Scholar
  90. 90.
    Carrasco-Gil S, Alvarez-Fernández A, Sobrino-Plata J, Millán R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadía J, Hernández LE (2011) Plant Cell Environ 34:778–791CrossRefGoogle Scholar
  91. 91.
    Tian SK, Lu LL, Yang XE, Huang HG, Brown P, Labavitch J, Liao HB, He ZL (2011) Environ Pollut 159:782–788CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Centre for Environmental Risk Assessment and RemediationUniversity of South AustraliaMawson LakesAustralia
  2. 2.CRC CARESalisburyAustralia
  3. 3.Department of Biological SciencesDartmouth CollegeHanoverUSA

Personalised recommendations